Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Parasit Vectors ; 17(1): 287, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956689

RESUMO

BACKGROUND: The emergence of pyrethroid resistance has threatened the elimination of Triatoma infestans from the Gran Chaco ecoregion. We investigated the status and spatial distribution of house infestation with T. infestans and its main determinants in Castelli, a municipality of the Argentine Chaco with record levels of triatomine pyrethroid resistance, persistent infestation over 2005-2014, and limited or no control actions over 2015-2020. METHODS: We conducted a 2-year longitudinal survey to assess triatomine infestation by timed manual searches in a well-defined rural section of Castelli including 14 villages and 234 inhabited houses in 2018 (baseline) and 2020, collected housing and sociodemographic data by on-site inspection and a tailored questionnaire, and synthetized these data into three indices generated by multiple correspondence analysis. RESULTS: The overall prevalence of house infestation in 2018 (33.8%) and 2020 (31.6%) virtually matched the historical estimates for the period 2005-2014 (33.7%) under recurrent pyrethroid sprays. While mean peridomestic infestation remained the same (26.4-26.7%) between 2018 and 2020, domestic infestation slightly decreased from 12.2 to 8.3%. Key triatomine habitats were storerooms, domiciles, kitchens, and structures occupied by chickens. Local spatial analysis showed significant aggregation of infestation and bug abundance in five villages, four of which had very high pyrethroid resistance approximately over 2010-2013, suggesting persistent infestations over space-time. House bug abundance within the hotspots consistently exceeded the estimates recorded in other villages. Multiple regression analysis revealed that the presence and relative abundance of T. infestans in domiciles were strongly and negatively associated with indices for household preventive practices (pesticide use) and housing quality. Questionnaire-derived information showed extensive use of pyrethroids associated with livestock raising and concomitant spillover treatment of dogs and (peri) domestic premises. CONCLUSIONS: Triatoma infestans populations in an area with high pyrethroid resistance showed slow recovery and propagation rates despite limited or marginal control actions over a 5-year period. Consistent with these patterns, independent experiments confirmed the lower fitness of pyrethroid-resistant triatomines in Castelli compared with susceptible conspecifics. Targeting hotspots and pyrethroid-resistant foci with appropriate house modification measures and judicious application of alternative insecticides with adequate toxicity profiles are needed to suppress resistant triatomine populations and prevent their eventual regional spread.


Assuntos
Doença de Chagas , Resistência a Inseticidas , Inseticidas , Piretrinas , Triatoma , Animais , Triatoma/efeitos dos fármacos , Triatoma/fisiologia , Piretrinas/farmacologia , Argentina , Inseticidas/farmacologia , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Humanos , Estudos Longitudinais , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Habitação , Ecossistema , Controle de Insetos
2.
Acta Trop ; : 107307, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950764

RESUMO

Insecticide resistance is considered a barrier to chemical control of Triatoma infestans, the main vector of Chagas disease in the Southern Cone of South America. Although initiatives to reduce the incidence of the disease in the region have integrated different strategies, they have mainly relied on vector elimination using pyrethroid insecticides such as deltamethrin. Reports of pyrethroid resistance in connection with T. infestans control failures first emerged in northern Argentina and southern Bolivia. Recently, a mosaic pyrethroid-resistant focus has been described in the center of the Argentine Gran Chaco (Department of General Güemes, Chaco Province), characterized by the presence of susceptible and very highly resistant populations in the same area. The involvement of different resistance mechanisms has been proposed, together with the contribution of environmental variables that promote the toxicological heterogeneity described. In the endemic zone of Argentina, however, new questions arise: Are there any other clusters of resistance? Is there a relationship between the distribution of resistance and environmental variables (as has been observed at smaller scale)? We studied toxicological data from insects collected and analyzed at 224 localities between 2010 and 2020 as part of the resistance monitoring conducted by the Chagas National Program. The sites were classified according to the survival rate of insects exposed to a discriminant dose of deltamethrin: 0-0.19 were considered susceptible, 0.2-0.79 low-resistance, and 0.8-1 high-resistance. Localities were georeferenced to describe the spatial distribution of resistance and to identify environmental variables (demographics, land use, urbanization, connectivity, and climate) potentially associated with resistance. We used Generalized Linear Models (GLMs) to examine the association between resistance and environmental predictors, selecting error distributions based on the response variable definition. For the entire period, 197 susceptible localities were distributed across the endemic zone. Localities with different survival rates were found throughout the area; 9 high-resistance localities circled the two previously identified resistant foci, and 18 low-resistance in 6 provinces, highlighting their relevance for control planning. Precipitation variables were linked to resistance in all the GLMs evaluated. Presence/absence models were the most accurate, with precipitation, distance from the capital city, and land use contributing to the distribution of resistance. This information could be valuable for improving T. infestans control strategies in future scenarios characterized by unpredictable changes in land use and precipitation.

3.
J Invertebr Pathol ; 206: 108161, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914370

RESUMO

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in the American continent. Here, we have tested a loop-mediated isothermal amplification (LAMP) test for a direct detection of T. cruzi in feces of Triatoma infestans, the main vector of this parasite in the Southern Cone of America. The analytical evaluation showed positive results with samples of triatomine feces artificially inoculated with DNA from strains of T. cruzi corresponding to each Discrete Typing Units (I-VI), with a sensitivity of up to one parasite per reaction. Conversely, the reaction yielded negative results when tested with DNA from Trypanosoma rangeli and other phylogenetically related and unrelated organisms. In triatomines captured under real field conditions (from urban households), and defined as positive or negative for T. cruzi using the reference microscopy technique, the LAMP test achieved a concordance of 100 %. Our results demonstrate that this LAMP reaction exhibits excellent analytical specificity and sensitivity without interference from the fecal matrix, since all the reactions were conducted without purification steps. This simple molecular diagnostic technique can be easily used by vector control agencies under field conditions.

4.
Acta Trop ; 256: 107239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735448

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (Chagas, 1909). One of the primary vectors of T. cruzi in South America is Triatoma infestans (Klug, 1834). This triatomine species is distributed across a huge latitudinal gradient, inhabiting domiciliary , peridomiciliary , and wild environments. Its wide geographic distribution provides an excellent opportunity to study the relationships between environmental gradients and intraspecific morphological variation. In this study, we investigated variations in wing size and shape in T. infestans across six ecoregions. We aimed to address the following questions: How do wing size and shape vary on a regional scale, does morphological variation follow specific patterns along an environmental or latitudinal gradient, and what environmental factors might contribute to wing variation? Geometric morphometric methods were applied to the wings of 162 females belonging to 21 T. infestans populations, 13 from Argentina (n = 105), 5 from Bolivia (n = 42), and 3 from Paraguay (n = 15). A comparison of wing centroid size across the 21 populations showed significant differences. Canonical Variate Analysis (CVA) revealed significant differences in wing shape between the populations from Argentina, Bolivia, and Paraguay, although there was a considerable overlap, especially among the Argentinian populations. Well-structured populations were observed for the Bolivian and Paraguayan groups. Two analyses were performed to assess the association between wing size and shape, geographic and climatic variables: multiple linear regression analysis (MRA) for size and Partial Least Squares (PLS) regression for shape. The MRA showed a significant general model fit. Six temperature-related variables, one precipitation-related variable, and the latitude showed significant associations with wing size. The PLS analysis revealed a significant correlation between wing shape with latitude, longitude, temperature-related, and rainfall-related variables. Wing size and shape in T. infestans populations varied across geographic distribution. Our findings demonstrate that geographic and climatic variables significantly influence T. infestans wing morphology.


Assuntos
Triatoma , Asas de Animais , Animais , Triatoma/anatomia & histologia , Triatoma/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/classificação , Asas de Animais/anatomia & histologia , Feminino , Argentina , Bolívia , Paraguai , Doença de Chagas/transmissão
5.
Acta Trop ; 255: 107219, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649106

RESUMO

In triatomines, vectors of Chagas disease, active dispersal takes place by walking and flying. Flight has received more attention than walking although the last is the dispersal modality used by nymphs due to their lack of wings and also used by adults, which would facilitate the colonization and reinfestation of houses after vector control actions. The present work studied the morphometrical variation of Triatoma infestans legs, the main vector of Chagas disease the Southern Cone of South America. We described morphometric traits and the natural variation of each leg segment. Different linear, size and shape variables of each component of the three right legs of fifth instar nymphs of T. infestans were analyzed using morphometric tools. We analyzed differentiation, variation and correlation for each segment across the fore-, mid and hind legs using different statistical approaches such as general linear model, canonical variates analysis, test of equality of coefficient of variation and partial least square analysis. We also analyzed variation and correlation between segments within each leg with partial least square and morphometric disparity analyses. Our results showed that the segments differed between legs, as general trends, the dimensions (length, width and/or size) were greater in the hind legs, smaller in the forelegs and intermediate in the mid ones. The femur and tibia (length and/or width) showed differences in morphometric variation between legs and the femur and tibia showed the highest levels of correlation between legs. On the other hand, in the fore- and mid legs, the femur (length or width) showed similar variation with tibia and tarsus lengths, but in the hind legs, the femur showed similar variation with all segments and not with the tibia length, and there were strong correlations between linear measurement within each leg. Our results suggest that the femur and tibia could play a determining role in the coordination between the legs that determines the walking pattern. Considering that these segments would also be linked to the specific function that each leg has, this study suggests a preponderant role of the femur and tibia in the walking locomotion of T. infestans.


Assuntos
Insetos Vetores , Ninfa , Triatoma , Animais , Triatoma/anatomia & histologia , Triatoma/crescimento & desenvolvimento , Triatoma/fisiologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Ninfa/anatomia & histologia , Ninfa/fisiologia , Ninfa/crescimento & desenvolvimento , Doença de Chagas/transmissão , Extremidades/anatomia & histologia
6.
Acta Trop ; 252: 107149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360259

RESUMO

The enzyme NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochromes P450 activity. Gene expression analysis of cytochromes P450 and CPR in deltamethrin-resistant and susceptible populations revealed that P450s genes are involved in the development of insecticide resistance in Triatoma infestans. To clarify the role of cytochromes P450 in insecticide resistance, it was proposed to investigate the effect of CPR gene silencing by RNA interference (RNAi) in a pyrethroid resistant population of T. infestans. Silencing of the CPR gene showed a significant increase in susceptibility to deltamethrin in the population analysed. This result support the hypothesis that the metabolic process of detoxification mediated by cytochromes P450 contributes to the decreased deltamethrin susceptibility observed in the resistant strain of T. infestans.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Animais , Inseticidas/farmacologia , Interferência de RNA , Piretrinas/farmacologia , Doença de Chagas/genética , Nitrilas/farmacologia , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia
7.
Acta Trop ; 247: 107010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666351

RESUMO

Genetic and morphological structure of vector populations are useful to identify panmictic groups, reinfestation sources and minimal units for control interventions. Currently, no studies have integrated genetic and morphometric data in Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Trypanosoma cruzi. We characterized the genetic and phenotypic structure of T. infestans at a small spatial scale (2-8 km), identified potential migrants and compared flight-related traits among genetic groups and between migrant and non-migrant insects in a well-defined area without insecticide spraying in the previous 12 years. We obtained microsatellite genotypes (N = 303), wing shape and size (N = 164) and body weight-to-length ratios (N = 188) in T. infestans from 11 houses in Pampa del Indio, Argentine Chaco. The uppermost level of genetic structuring partially agreed with the morphological groups, showing high degrees of substructuring. The genetic structure showed a clear spatial pattern around Route 3 and one genetic group overlapped with an area of persistent infestation and insecticide resistance. Females harboured more microsatellite alleles than males, which showed signs of isolation-by-distance. Wing shape discriminant analyses of genetic groups revealed low reclassification scores whereas wing size differed among genetic groups for both sexes. Potential migrants (8%) did not differ from non-migrants in sex, ecotope, wing shape and size. However, male migrants had lower W/L than non-migrants suggesting poorer nutritional state. Our findings may contribute to the understanding of population characteristics, dispersal dynamics and ongoing elimination efforts of T. infestans.


Assuntos
Triatoma , Feminino , Animais , Masculino , Triatoma/genética , Alelos , Análise Discriminante , Genótipo , Resistência a Inseticidas
8.
Parasit Vectors ; 16(1): 225, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415248

RESUMO

BACKGROUND: Triatomines are blood-sucking insects capable of transmitting Trypanosoma cruzi, the parasite that causes Chagas disease in humans. Vectorial transmission entails an infected triatomine feeding on a vertebrate host, release of triatomine infective dejections, and host infection by the entry of parasites through mucous membranes, skin abrasions, or the biting site; therefore, transmission to humans is related to the triatomine-human contact. In this cross-sectional study, we evaluated whether humans were detected in the diet of three sylvatic triatomine species (Mepraia parapatrica, Mepraia spinolai, and Triatoma infestans) present in the semiarid-Mediterranean ecosystem of Chile. METHODS: We used triatomines collected from 32 sites across 1100 km, with an overall T. cruzi infection frequency of 47.1% (N = 4287 total specimens) by conventional PCR or qPCR. First, we amplified the vertebrate cytochrome b gene (cytb) from all DNA samples obtained from triatomine intestinal contents. Then, we sequenced cytb-positive PCR products in pools of 10-20 triatomines each, grouped by site. The filtered sequences were grouped into amplicon sequence variants (ASVs) with a minimum abundance of 100 reads. ASVs were identified by selecting the best BLASTn match against the NCBI nucleotide database. RESULTS: Overall, 16 mammal (including human), 14 bird, and seven reptile species were identified in the diet of sylvatic triatomines. Humans were part of the diet of all analyzed triatomine species, and it was detected in 19 sites representing 12.19% of the sequences. CONCLUSIONS: Sylvatic triatomine species from Chile feed on a variety of vertebrate species; many of them are detected here for the first time in their diet. Our results highlight that the sylvatic triatomine-human contact is noteworthy. Education must be enforced for local inhabitants, workers, and tourists arriving in endemic areas to avoid or minimize the risk of exposure to Chagas disease vectors.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animais , Humanos , Ecossistema , Chile/epidemiologia , Estudos Transversais , Triatoma/genética , Triatoma/parasitologia , Triatominae/parasitologia , Trypanosoma cruzi/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos/genética
9.
Acta Trop ; 243: 106933, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119837

RESUMO

The interruption of domestic vector-borne transmission of Trypanosoma cruzi in the Americas remains one of the main goals of the World Health Organization 2021-2030 road map for neglected tropical diseases. We implemented a longitudinal intervention program over 2015-2022 to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai, Chaco Province, Argentina and found that house infestation (3851 houses inspected) and triatomine abundance decreased over the first 2 years post-intervention (YPI), and remained stable thereafter associated to moderate pyrethroid resistant foci. Here we assessed selected components of transmission risk after interventions across the rural-to-urban gradient. We used multistage random sampling to select a municipality-wide sample of T. infestans. We examined 356 insects collected in 87 houses for T. cruzi infection using kDNA-PCR and identified their bloodmeal sources using an indirect ELISA. The overall prevalence of T. cruzi infection post-intervention was 1.7% (95% CI 0.7-3.6). Few houses (5.7%) (95% CI 2.5-12.8) harbored infected triatomines across the gradient. Infected triatomines were found in 5 peri­urban or rural dwellings over 1-4 years post-intervention. No infected insect was found in the urban area. The human blood index decreased from 66.2 at baseline to 42.8 at 1YPI and then increased to 92.9 at 4-5 YPI in the few infested domiciles detected. The percentage of houses with human-fed bugs displayed a similar temporal trend. Our results indicate marginal risks of domestic vector-borne transmission across the district after implementation of the intervention program. Ensuring sustainable vector surveillance coupled with human etiological diagnosis and treatment in hiperendemic areas like the Gran Chaco region, is urgently needed. 252 words.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Insetos Vetores , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Controle de Insetos/métodos , Argentina/epidemiologia
10.
Insects ; 14(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103140

RESUMO

Triatoma infestans is one of the main vectors of Chagas disease in Latin America. Although the species is under control in most Latin countries, it is still necessary to maintain epidemiological surveillance. The present study aims to characterize T. infestans populations from residual foci in Bahia and Rio Grande do Sul, Brazil, comparing them with natural populations in Argentina and Bolivia. For this, we adopt the geometric morphometry of the heads. It is possible to report the morphometric variety of the studied populations. In addition, we show that the size of the heads contributes to the differentiation between populations, while the shape has less power to discriminate groups. Furthermore, we show that some natural populations have morphometric proximity to residual populations, suggesting a relationship between these triatomines. Our data do not support the origin of residual populations but demonstrate the importance of new studies with other techniques to understand the dynamics of distribution and reintroduction of these vectors in Brazilian territory.

11.
Arch Insect Biochem Physiol ; 113(3): e22013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36973856

RESUMO

Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.


Assuntos
Triatoma , Animais , Saliva , Muramidase , Comportamento Alimentar , Glândulas Salivares
12.
Acta Trop ; 237: 106728, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36273539

RESUMO

Triatoma infestans, one of the most important vectors of Trypanosoma cruzi to humans, has recently been discovered introduced in Mexico. Some of the most important biological parameters to estimate the vectorial capacity of a triatomine, such as the hatching of eggs, life cycle, feeding and defecation behaviors for each instar of a population of T. infestans introduced into Mexico are reported. The egg-to-adult development times of the three studied cohorts had a mean of 215.7 days. The mean total number of blood meals required to molt from first-instar nymphs to adults was 11.7. The cumulative mortality was 30.8%. The highest mortality rate was recorded for third-instar nymphs (10.3%), whereas the lowest rate (0.8%) was recorded for first-instar nymphs. All studied specimens began feeding as soon as a blood meal source was offered, showing "aggressive" behavior. Feeding times were ˃ 10 min for all instars, increasing according to instar, in a similar pattern to the development times and the required blood meals before molting. Most (57.7 -82.5%) of the studied specimens of the first- to third-instar nymphs and adults of T. infestans defecated when feeding (WF). The average number of eggs laid per female per day was 0.9, with an eclosion rate of 96.4%. The results of most of the studied parameters confirm the importance of T. infestans wherever it is found because of its potential high capacity for transmitting T. cruzi to hosts. Active entomological surveillance should be carried out in the area of the first discovery of the introduced T. infestans and its surroundings to avoid the dissemination of this effective vector species in Mexico.


Assuntos
Doença de Chagas , Triatoma , Estatísticas Vitais , Humanos , Animais , Feminino , Espécies Introduzidas , México , Insetos Vetores , Comportamento Alimentar , Ninfa
13.
BMC Genomics ; 23(1): 861, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585617

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas disease in the Americas, currently transmitting it in Argentina, Paraguay, and Bolivia. Many T. infestans populations present insecticide resistance, reducing the efficiency of control campaigns. Alternative vector control methods are needed, and molecular targets mediating fundamental physiological processes can be a promising option to manipulate kissing bug behavior. Therefore, it is necessary to characterize the main sensory targets, as well as to determine whether they are modulated by physiological factors. In order to identify gene candidates potentially mediating host cue detection, the antennal transcripts of T. infestans fifth instar larvae were sequenced and assembled. Besides, we evaluated whether a blood meal had an effect on transcriptional profiles, as responsiveness to host-emitted sensory cues depends on bug starvation. RESULTS: The sensory-related gene families of T. infestans were annotated (127 odorant receptors, 38 ionotropic receptors, 11 gustatory receptors, 41 odorant binding proteins, and 25 chemosensory proteins, among others) and compared to those of several other hemipterans, including four triatomine species. Several triatomine-specific lineages representing sensory adaptations developed through the evolution of these blood-feeding heteropterans were identified. As well, we report here various conserved sensory gene orthogroups shared by heteropterans. The absence of the thermosensor pyrexia, of pickpocket receptor subfamilies IV and VII, together with clearly expanded takeout repertoires, are revealed features of the molecular bases of heteropteran antennal physiology. Finally, out of 2,122 genes whose antennal expression was significantly altered by the ingestion of a blood meal, a set of 41 T. infestans sensory-related genes (9 up-regulated; 32 down-regulated) was detected. CONCLUSIONS: We propose that the set of genes presenting nutritionally-triggered modulation on their expression represent candidates to mediate triatomine host-seeking behavior. Besides, the triatomine-specific gene lineages found represent molecular adaptations to their risky natural history that involves stealing blood from an enormously diverse set of vertebrates. Heteropteran gene orthogroups identified may represent unknown features of the sensory specificities of this largest group of hemipteroids. Our work is the first molecular characterization of the peripheral modulation of sensory processes in a non-dipteran vector of human disease.


Assuntos
Doença de Chagas , Triatoma , Animais , Humanos , Triatoma/genética , Triatoma/metabolismo , Transcriptoma , Bolívia , Resistência a Inseticidas
14.
Insects ; 13(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36292854

RESUMO

Triatomine bugs of the genera Triatoma and Rhodnius are vectors of Chagas disease, a neglected tropical disease of humans in South America caused by Trypanosoma cruzi. Triatoma virus (TrV), a natural pathogen of Triatoma infestans, has been proposed as a possible tool for the bio-control of triatomine bugs, but research into this virus has been hampered by a lack of suitable host cells for in vitro propagation. Here we report establishment and partial characterisation of continuous cell lines from embryos of T. infestans (TIE/LULS54) and Rhodnius prolixus (RPE/LULS53 and RPE/LULS57). RNAseq screening by a sequence-independent, single primer amplification approach confirmed the absence of TrV and other RNA viruses known to infect R. prolixus, indicating that these new cell lines could be used for propagation of TrV.

15.
Acta Trop ; 235: 106631, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948082

RESUMO

Chagas disease is an anthropozoonotic disease caused by the protozoan Trypanosoma cruzi, transmitted by triatomine vectors. In Chile, there are four species of triatomine bugs that are potential vectors of T. cruzi, being Triatoma infestans the main vector in endemic areas of the country. The "Programa Nacional de Control Vectorial de la Enfermedad de Chagas de Chile" has significantly reduced the rates of home infestation to less than 1% and has interrupted vectorial transmission since 1999. The objective of this study was to evaluate the impact of vectorial control and the continuity of the interruption of vectorial transmission in northern Chile (provincia de El Loa, región de Antofagasta). The study comprised fingerstick blood samples of 2104 children, attending local school, venous blood samples of 65 dogs, associated to houses with T. infestans unique findings and vector infestation, and intestine samples of 284 T. infestans specimens, from the provincia de El Loa, during 2014-2016 period. The samples were analyzed by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence and/or polymerase chain reaction (PCR) techniques. A total of 5 children (0.24%), 7 dogs (10.8%), and 6 specimens of T. infestans (2.1%) resulted positive to T. cruzi infection. This study showed that the risk of transmission of Chagas disease is low in the north of Chile (provincia de El Loa), detected a low positive rate of chagasic children and of infected triatomine bugs, and showed the existence of T. cruzi transmission in dogs, which are used as natural sentinels for the detection of T. cruzi infection, being especially useful during surveillance program in human population characterized by low seroprevalence.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Doença de Chagas/veterinária , Criança , Chile/epidemiologia , Cães , Humanos , Insetos Vetores , Estudos Soroepidemiológicos
16.
Pathogens ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890030

RESUMO

Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host-parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution.

18.
J Med Entomol ; 59(6): 2150-2157, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35716079

RESUMO

Here, we report a new record of Triatoma infestans (Klug) in Mexico after 50 years and provide a brief description of the discovery area. Fifty-nine specimens (71.2% adults) of the introduced species were collected from the peridomestic areas of a single house in the port of Manzanillo in the state of Colima, Mexico. Thirty-one specimens (52.5%) were collected from the exterior walls of the house and were apparently attracted to light. The other specimens (47.5%) were associated with chickens. No specimen was infected with Trypanosoma cruzi Chagas, the causative agent of Chagas disease, possibly because they were feeding on chickens. We speculate that the introduced species travelled from South America to Mexico via seed shipment in a twenty-foot equivalent unit (TEU) maritime container. Because Mexican phytosanitary regulations demand only the cargo to be inspected, the triatomines could have escaped notice during inspection. Subsequently, as the cargo was unloaded and the TEU was stored, the triatomines likely flew to and invaded the nearby residential areas. The rediscovery of this domestic vector of T. cruzi in Mexico warrants further investigation owing to the potential risk of transmission to the inhabitants of the study area.


Assuntos
Espécies Introduzidas , Triatoma , Animais , Doença de Chagas , Galinhas , Insetos Vetores , México , Triatoma/classificação , Trypanosoma cruzi
19.
Microorganisms ; 10(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630447

RESUMO

Trypanosoma cruzi is the causal agent of Chagas disease, a parasitic zoonosis transmitted mainly through the feces of triatomine insects. Triatoma infestans is the main triatomine vector of this disease in South America. Previous research has shown that T. cruzi infection modifies the behavior of triatomines. We evaluated, for the first time, the effect of parasite load on feeding and defecation behavior, which we quantified by using real-time PCR. The detection time of the host was shorter in infected individuals, and the number of bites increased, while the dejection time was reduced when compared with the non-infected group. A significant correlation between the parasite load and the behavioral changes registered in the infected triatomines was found. These results would indicate that the intensity of T. cruzi infection modulates the feeding and defecation behavior of T. infestans, increasing the vector competence of this triatomine vector.

20.
Neotrop Entomol ; 51(3): 483-492, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35360894

RESUMO

Chagas' disease is transmitted mainly by members of the subfamily Triatominae (Hemiptera: Reduviidae). Among them, Triatoma infestans (Klug) is the main vector of the disease in Southern Cone of Latin America. In order to contribute to knowledge of the genetic variation between triatomine vectors, in the present study, we analyzed the intraspecific and interspecific variations of the seven mitogenomes available from Triatominae. In addition, in order to examine their evolutionary relationships with others species of Reduviidae and to estimate the divergence time of the main lineages, we constructed phylogenetic trees including mitogenome sequences of 30 species from Reduviidae. Comparative analysis between mitochondrial DNA sequences from two specimens of T. infestans revealed a total of 54 variable sites. Triatoma infestans, Triatoma dimidiata (Latreille), Triatoma rubrofasciata (De Geer), Triatoma migrans (Breddin), Rhodnius pictipes (Stål), and Panstrongylus rufotuberculatus (Champion) present similar mitogenome organization and the length differences observed among these species are primarily caused by variations in control region (CR) and intergenic spacers (IGS). The relative synonymous codon usage values (RSCU) were similar in the six species of Triatominae, and in agreement with the observed in other insects, a biased use of A and C nucleotides in the majority strand was detected. The monophyly of five subfamilies was strongly supported (Phymatinae, Peiratinae, Triatominae, Stenopodainae, and Harpactorinae), while the sampled species of Reduviinae were grouped with one specie from the Salyavatinae subfamily. The oldest subfamily is Phymatinae at 100.3 Mya (99.6-102.2 Mya) and the youngest is Triatominae and Stenopodainae at 52.6 Mya (42.5-63.7 Mya). The estimated diversification time for the Triatominae subfamily agrees with the Andean uplift geological event. An analysis with more mitogenomes from more Triatominae species would be necessary to provide sufficient evidence to support this finding.


Assuntos
Doença de Chagas , Genoma Mitocondrial , Triatoma , Triatominae , Animais , Doença de Chagas/genética , Vetores de Doenças , Filogenia , Triatoma/genética , Triatominae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...