Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2934-2937, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39104711

RESUMO

Cell sheet technology (CST) has primarily been applied in tissue engineering for repair purposes. Our preliminary research indicates that an in vivo prostate cancer model established using CST outperforms traditional cell suspension methods. However, the potential for CST to be used with bladder cancer cells has not yet been explored. In this study, we investigated the ability of two bladder cancer cell lines, T24 and 5637, to form cell sheets. We found that T24 cells successfully formed cell sheets. We then performed staining to evaluate the integrity, specific markers, and proliferation characteristics of the T24 cell sheets. Our findings demonstrate that bladder cancer cell sheets can be established, providing a valuable tool for both in vivo and in vitro bladder cancer studies and for personalized drug selection for patients.

2.
Bioeng Transl Med ; 9(4): e10648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036079

RESUMO

Vasculogenic mimicry (VM) describes a process by which tumor cells formed a novel microcirculation pattern in an endothelial cell-free manner. Clinically, VM is associated with aggressive phenotype and poor patient survival. However, the current models for investigating VM include 2D monolayer cultures, Matrigel-based cultures, and animal models, each of which has limitations. Matrigel-based models often exhibit batch-to-batch variations, while in vivo tumor models currently produce insufficient amounts of VM. There is currently no suitable tumor model to discover new therapeutic targets against VM. Herein, we establish an extracellular matrix (ECM)-based engineered tumor model in vivo and in vitro. In this study, we demonstrate that matrix proteins enhanced the VM formation in the engineered xenograft model. Furthermore, we also investigated the role of collagen/fibronectin (FN) in melanoma progression and VM formation. Compared with cells cultured on TCPS plates, the B16F10 cells cultured on collagen/FN coated plates showed increased proliferation and stemness, and significantly enhanced invasion and formation of VM networks. Molecular mechanism analysis showed that Integrin/VE-cadherin/EphA2/PI3K/MMP-2 signaling pathways are responsible for VM formation. Our results indicate that collagen/FN matrix plays an important role in VM formation in melanoma, suggesting that ECM protein is a potential therapeutic target for anti-VM therapy for melanoma.

3.
Protein Pept Lett ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39041280

RESUMO

BACKGROUND: Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment. METHODS: EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 µg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 µg/kg dose was studied. RESULTS: The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular ß- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days. CONCLUSION: EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.

4.
Transl Oncol ; 46: 102020, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843659

RESUMO

This study investigated the synergistic potential of an oncolytic herpes simplex virus armed with interleukin 12 (VT1092M) in combination with immune checkpoint inhibitors for enhancing antitumor responses. The potential of this combination treatment to induce systemic antitumor immunity was assessed using bilateral subcutaneous tumor and tumor re-challenge mouse models. The antitumor efficacy of various OV and ICI treatment combinations and the underlying mechanisms were explored through diverse analytical techniques, including flow cytometry and RNA sequencing. Using VT1092M, either alone or in combination with an anti-PD-L1 antibody, significantly reduced the sizes of both the injected and untreated abscopal tumors in a bilateral tumor mouse model. The combination therapy demonstrated superior antitumor efficacy to the other treatment conditions tested, which was accompanied by an increase in T cell numbers and CD8+T cell activation. Results from the survival and tumor re-challenge experiments showed that the combination therapy elicited long-term, tumor-specific immune responses, which were associated with tumor clearance and prolonged survival. Immune cell depletion assays identified CD8+T cells as the crucial mediators of systemic antitumor immunity during combination therapy. In conclusion, the combination of VT1092M and PD-L1 blockade emerged as a potent inducer of antitumor immune responses, surpassing the efficacy of each monotherapy. This synergistic approach holds promise for achieving robust and sustained antitumor immunity, with potential implications for preventing tumor metastasis in patients with cancer.

5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928259

RESUMO

Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , RNA Viral , Replicação Viral , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , RNA Viral/genética , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Terapia Viral Oncolítica/métodos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/genética , Feminino
6.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823920

RESUMO

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Assuntos
Resinas Acrílicas , Hidrogéis , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efeitos dos fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Metacrilatos/química , Técnicas de Cocultura , Neoplasias/patologia
8.
Macromol Biosci ; : e2400227, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940700

RESUMO

The immune system is a pivotal player in determining tumor fate, contributing to the immunosuppressive microenvironment that supports tumor progression. Considering the emergence of biomaterials as promising platforms to mimic the tumor microenvironment, human platelet lysate (PLMA)-based hydrogel beads are proposed as 3D platforms to recapitulate the tumor milieu and recreate the synergistic tumor-macrophage communication. Having characterized the biomaterial-mediated pro-regenerative macrophage phenotype, an osteosarcoma spheroid encapsulated into a PLMA hydrogel bead is explored to study macrophage immunomodulation through paracrine signaling. The culture of PLMA-Tumor beads on the top of a 2D monolayer of macrophages reveals that tumor cells triggered morphologic and metabolic adaptations in macrophages. The cytokine profile, coupled with the upregulation of gene and protein anti-inflammatory biomarkers clearly indicates macrophage polarization toward an M2-like phenotype. Moreover, the increased gene expression of chemokines identified as pro-tumoral environmental regulators suggest a tumor-associated macrophage phenotype, exclusively stimulated by tumor cells. This pro-tumoral microenvironment is also found to enhance tumor invasiveness ability and proliferation. Besides providing a robust in vitro immunomodulatory tumor model that faithfully recreates the tumor-macrophage interplay, this human-based platform has the potential to provide fundamental insights into immunosuppressive signaling and predict immune-targeted response.

9.
Int Immunopharmacol ; 136: 112359, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815348

RESUMO

While Interleukin 2 (IL2) has the capability to activate both NK and T cells robustly, its limited in vivo half-life, considerable toxicity, and tendency to boost Treg cells pose significant challenges, restricting its widespread application in cancer therapy. In this investigation, we engineered a novel IL2 variant (IL2-4M-PEG) with reduced CD25 binding activity and an extended half-life by substituting amino acids associated with CD25 binding and implementing site-directed PEGylation. IL2-4M-PEG notably amplifies effector cells over Treg cells. Furthermore, our findings reveal that IL2-4M-PEG, characterized by an extended half-life, exhibits anti-tumor effects in a mouse model. Consequently, this innovative IL2 holds the potential for enhancing combined cancer therapies in the future.


Assuntos
Imunoterapia , Subunidade alfa de Receptor de Interleucina-2 , Interleucina-2 , Polietilenoglicóis , Animais , Interleucina-2/metabolismo , Polietilenoglicóis/química , Imunoterapia/métodos , Humanos , Camundongos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Ligação Proteica , Camundongos Endogâmicos C57BL , Feminino , Camundongos Endogâmicos BALB C , Células Matadoras Naturais/imunologia
10.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794252

RESUMO

In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.

11.
Sci Rep ; 14(1): 11006, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744944

RESUMO

With cancer immunotherapy and precision medicine dynamically evolving, there is greater need for pre-clinical models that can better replicate the intact tumor and its complex tumor microenvironment (TME). Precision-cut tumor slices (PCTS) have recently emerged as an ex vivo human tumor model, offering the opportunity to study individual patient responses to targeted therapies, including immunotherapies. However, little is known about the physiologic status of PCTS and how culture conditions alter gene expression. In this study, we generated PCTS from head and neck cancers (HNC) and mesothelioma tumors (Meso) and undertook transcriptomic analyses to understand the changes that occur in the timeframe between PCTS generation and up to 72 h (hrs) in culture. Our findings showed major changes occurring during the first 24 h culture period of PCTS, involving genes related to wound healing, extracellular matrix, hypoxia, and IFNγ-dependent pathways in both tumor types, as well as tumor-specific changes. Collectively, our data provides an insight into PCTS physiology, which should be taken into consideration when designing PCTS studies, especially in the context of immunology and immunotherapy.


Assuntos
Perfilação da Expressão Gênica , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Transcriptoma , Medicina de Precisão/métodos , Imunoterapia/métodos
12.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1523-1535, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783813

RESUMO

The adoptive immunotherapy mediated by tumor-infiltrating lymphocytes (TILs) has shown definite efficacy against various solid tumors. However, the inefficiency of the conventional method based on in vitro expansion of TILs fails to achieve the cell count and high tumor-killing activity required for therapeutic purposes. This study investigated the effect of 3D tumor spheroids on the activation and expansion of TILs in vitro, aiming to provide a novel approach for the expansion of TILs. We procured TILs and primary tumor cells from surgical samples of lung cancer patients and then compared the impacts of lung cancer cell line NCI-H1975 and primary lung cancer cells cultured under 2D and 3D conditions on the activation, expansion, and anti-tumor activity of TILs. Furthermore, we added the programmed cell death protein 1 (PD-1) antibody into the co-culture of primary tumor cells and TILs within a 3D environment to assess the effects of the antibody on TILs. The results showed that compared with 2D cultured tumor cells, the 3D cultured H1975 cells significantly enhanced the expansion of TILs, increasing the proportion of CD3+/CD8+ cells in TILs to 61.6%. The 3D primary tumor model also enhanced the proportion of CD3+/CD8+ cells in TILs (45.5%, 54.4%), induced apoptosis of tumor epithelial cells and decreased the overall tumor cells survival rate (16.7%) after co-culture. PD-1 antibodies further improved the in vitro expansion capacity of TILs mediated by 3D tumor spheroids, resulting in the proportions of 50.9% and 57.0% for CD3+/CD8+ cells and enhancing the antitumor activity significantly (reducing the overall tumor survival rate to 9.36%). In summary, the use of 3D tumor spheroids significantly promoted the expansion and improved the anti-tumor effect of TILs, and the use of the PD-1 antibody further promoted the expansion and tumor-killing effect of TILs.


Assuntos
Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Esferoides Celulares , Humanos , Linfócitos do Interstício Tumoral/imunologia , Esferoides Celulares/imunologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Receptor de Morte Celular Programada 1/imunologia , Imunoterapia Adotiva , Técnicas de Cocultura , Técnicas de Cultura de Células , Células Tumorais Cultivadas , Proliferação de Células
13.
Biomaterials ; 310: 122631, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815457

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFß) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.


Assuntos
Carcinoma Ductal Pancreático , Matriz Extracelular , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Linhagem Celular Tumoral , Impressão Tridimensional , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Bioimpressão/métodos , Células Estromais/metabolismo , Células Estromais/patologia , Modelos Biológicos
14.
Int J Pharm ; 657: 124123, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621618

RESUMO

The development of chemoresistance is a major obstacle in post-surgical adjuvant therapy of cancer, leading to cancer cell survival, recurrence, and metastasis. This study reports a 3D-printed plasmonic implant developed for the post-surgical adjuvant therapy of cisplatin-resistant cancer cells to prevent relapse. The implant was printed using optimized biomaterial ink containing biodegradable polymers [poly(L-lactide) and hydroxypropyl methylcellulose] blended suitably with laser-responsive graphene and chemo drug (Cisplatin). The irradiation of scar-driven 3D-printed implant with a laser stimulates graphene to generate a series of hyperthermia events leading to photothermolysis of cisplatin-resistant cancer cells under the combined influence of sustained cisplatin release. The developed personalized implant offers pH-responsive sustained drug release for 28 days. The implant exhibited acceptable biophysical properties (Tensile strength: 3.99 ± 0.15 MPa; modulus: 81 ± 9.58 MPa; thickness: 110 µm). The 3D-printed implant effectively reverses the chemoresistance in cisplatin-resistant 3D spheroid tumor models. Cytotoxicity assay performed using cisplatin-resistant (CisR) cell line revealed that the cell viability was reduced to 39.80 ± 0.68 % from 61.37 ± 0.98 % in CisR tumor spheroids on combined chemo-photothermal therapy. The combination therapy reduced the IC50 value from 71.05 µM to 48.73 µM in CisR spheroids. Apoptosis assay revealed an increase in the population of apoptotic cells (35.45 ± 1.56 % →52.53 ± 2.30 %) on combination therapy. A similar trend was observed in gene expression analysis, where the expression of pro-apoptotic genes Caspase 3 (3.73 ± 0.04 fold) and Bcl-2-associated X protein (BAX) (3.35 ± 0.02 fold) was increased on combination therapy. This 3D-printed, biodegradable implant with chemo-combined thermal ablating potential may provide a promising approach for the adjuvant treatment of resistant cancer.


Assuntos
Antineoplásicos , Cisplatino , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Grafite , Neoplasias Bucais , Impressão Tridimensional , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Grafite/química , Grafite/administração & dosagem , Humanos , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lasers , Sobrevivência Celular/efeitos dos fármacos , Recidiva Local de Neoplasia/prevenção & controle , Apoptose/efeitos dos fármacos
15.
Cancers (Basel) ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672617

RESUMO

The DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.

16.
Prostate ; 84(9): 823-831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606933

RESUMO

BACKGROUND: There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites. METHODS: This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging. RESULTS: The TRAMP-C2 tumors grew rapidly to a predetermined endpoint size of 10 mm within 3 weeks, whereas the NEPC tumors grew at a slower rate over 7 weeks. The tumors were readily detected by MR and confidently identified when they were approximately 2-3 mm in size. The tumors were less well-defined on CT. The TRAMP-C2 tumors were characterized by amorphous sheets of poorly differentiated cells similar to a high-grade prostatic adenocarcinoma and frequent macroscopic peritoneal and lymph node metastases. In contrast, the NEPC's displayed a neuroendocrine morphology with polygonal cells arranged in nests and solid sheets and high count. There was a local invasion of the bladder and other adjacent tissues but no identifiable metastases. The TRAMP-C2 tumors were more hypoxic than the NEPC tumors. CONCLUSIONS: This novel preclinical orthotopic prostate cancer mouse model is suitable for either syngeneic or patient derived tumors and will be effective in developing and advancing the current selection of treatments for patients with prostate cancer.


Assuntos
Adenocarcinoma , Modelos Animais de Doenças , Neoplasias da Próstata , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico por imagem , Camundongos , Humanos , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Linhagem Celular Tumoral , Camundongos Transgênicos , Transplante de Neoplasias/métodos , Imageamento por Ressonância Magnética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/diagnóstico por imagem , Carcinoma Neuroendócrino/terapia
17.
Colloids Surf B Biointerfaces ; 238: 113877, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615390

RESUMO

An ideal bone metastasis animal model is critical and fundamental for mechanistic research and following development of new drug and treatment. Caudal artery (CA) injection allows bone metastasis in the hindlimb, while in-depth targeted and quantitative studies of bone metastasis require a new model to overcome its limitations. Here, we developed a targeted, quantitative, and highly consistent method for the modeling of bone metastasis with cell-based magnetic micro-living-motor (MLM) system created by effectively combining Fe3O4-PDA-Au with biosafety. The MLM system can achieve efficient migration, target site colonization and control tumorigenesis in bone precisely with the application of a magnetic field. In vivo, day 3 post cell injection, tumor bone metastasis signals were observed locally in the injected femur among 82.76% mice of the MLM group as compared to the 56.82% in the CA group, and the signal intensity was 45.1 and 95.9 times stronger than that in the left and right lower limbs of the CA group, respectively. Post-injection day 28, metastasis in vital organs was reduced by approximately 90% in the MLM group compared to the CA group. Our innovative use of the MLM system in the field of tumor modeling opens a new avenue for exploring the mechanisms of tumor bone metastasis, recurrence and drug resistance.


Assuntos
Neoplasias Ósseas , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Camundongos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Humanos , Feminino , Campos Magnéticos , Camundongos Endogâmicos BALB C
18.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612551

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Pâncreas , Hormônios Pancreáticos , Colágeno
19.
Cell Oncol (Dordr) ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520648

RESUMO

BACKGROUND: Cancer immunotherapy is receiving worldwide attention for its induction of an anti-tumor response. However, it has had limited efficacy in some patients who acquired resistance. The dynamic and sophisticated complexity of the tumor microenvironment (TME) is the leading contributor to this clinical dilemma. Through recapitulating the physiological features of the TME, 3D bioprinting is a promising research tool for cancer immunotherapy, which preserves in vivo malignant aggressiveness, heterogeneity, and the cell-cell/matrix interactions. It has been reported that application of 3D bioprinting holds potential to address the challenges of immunotherapy resistance and facilitate personalized medication. CONCLUSIONS AND PERSPECTIVES: In this review, we briefly summarize the contributions of cellular and noncellular components of the TME in the development of immunotherapy resistance, and introduce recent advances in 3D bioprinted tumor models that served as platforms to study the interactions between tumor cells and the TME. By constructing multicellular 3D bioprinted tumor models, cellular and noncellular crosstalk is reproduced between tumor cells, immune cells, fibroblasts, adipocytes, and the extracellular matrix (ECM) within the TME. In the future, by quickly preparing 3D bioprinted tumor models with patient-derived components, information on tumor immunotherapy resistance can be obtained timely for clinical reference. The combined application with tumoroid or other 3D culture technologies will also help to better simulate the complexity and dynamics of tumor microenvironment in vitro. We aim to provide new perspectives for overcoming cancer immunotherapy resistance and inspire multidisciplinary research to improve the clinical application of 3D bioprinting technology.

20.
Mol Oncol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511232

RESUMO

Immune checkpoint blockers (ICBs) targeting programmed cell death protein 1 (PD-1) have been proven to be an effective first-line therapy against programmed cell death 1 ligand 1 (PD-L1; also known as CD274 molecule)-expressing head and neck squamous cell carcinoma (HNSCC) in recent KEYNOTE-048 trial. However, associated changes in the tumor microenvironment (TME) and underlying mechanisms remain elusive. Oral tumors in C57/BL6 mice were induced by administering 7,12-dimethylbenzanthracene into the buccal mucosa. Single-cell suspension was isolated from tumor tissue; proliferating cells were injected subcutaneously into the left flank of mice to establish Ajou oral cancer (AOC) cell lines. Subsequently, a syngeneic PD-L1-expressing HNSCC model was developed by injecting AOC cells into the buccal or tongue area. The model recapitulated human HNSCC molecular features and showed reliable in vivo tumorigenicity with significant PD-L1 expression. ICB monotherapy induced global changes in the TME, including vascular normalization. Furthermore, the antitumor effect of ICB monotherapy was superior to those of other therapeutic agents, including cisplatin and inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2). The ICB-induced antitumorigenicity and TME normalization were alleviated by blocking the type I interferon pathway. In summary, ICB monotherapy is sufficient to induce TME normalization in the syngeneic model; the type I interferon pathway is indispensable in realizing the effects of ICBs. Furthermore, these results explain the underlying mechanism of the efficacy of ICB monotherapy against PD-L1-expressing HNSCC in the KEYNOTE-048 trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...