Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.518
Filtrar
1.
Mol Ther Nucleic Acids ; 35(3): 102256, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39045515

RESUMO

Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.

2.
Adv Healthc Mater ; : e2400290, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021323

RESUMO

Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These "bionic antibodies" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.

3.
Acta Pharm Sin B ; 14(7): 3009-3026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027237

RESUMO

The application of extracellular vesicles, particularly exosomes (EXs), is rapidly expanding in the field of medicine, owing to their remarkable properties as natural carriers of biological cargo. This study investigates utilization of exosomes derived from stromal cells of tumor adjacent normal tissues (NAF-EXs) for personalized medicine, which can be derived at the time of diagnosis by endoscopic ultrasound. Herein, we show that exosomes (EXs) derived from NAFs demonstrate differential bio-physical characteristics, efficient cellular internalization, drug loading efficiency, pancreatic tumor targeting and delivery of payloads. NAF-derived EXs (NAF-EXs) were used for loading ormeloxifene (ORM), a potent anti-cancer and desmoplasia inhibitor as a model drug. We found that ORM maintains normal fibroblast cell phenotype and renders them incompatible to be triggered for a CAF-like phenotype, which may be due to regulation of Ca2+ influx in fibroblast cells. NAF-EXs-ORM effectively blocked oncogenic signaling pathways involved in desmoplasia and epithelial mesenchymal transition (EMT) and repressed tumor growth in xenograft mouse model. In conclusion, our data suggests preferential tropism of NAF-EXs for PDAC tumors, thus imply feasibility of developing a novel personalized medicine for PDAC patients using autologous NAF-EXs for improved therapeutic outcome of anti-cancer drugs. Additionally, it provides the opportunity of utilizing this biological scaffold for effective therapeutics in combination with standard therapeutic regimen.

4.
ACS Appl Mater Interfaces ; 16(29): 38377-38386, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38996001

RESUMO

Photothermal therapy (PTT) holds great potential in the field of cancer treatment due to its high specificity and low invasiveness. However, the low conversion efficiency, inadequate tumor accumulation, and limited cellular uptake continue to impede PTT effectiveness in treating tumors. The present study focuses on the utilization of quinoxaline and its nanoparticles to develop an organic semiconducting photothermal agent (PAQI-BDTT) for tumor photothermal therapy. To achieve this, PAQI-BDTT was encapsulated within liposomes modified with cyclic Arg-Gly-Asp (cRGD) peptide targeting tumors (named T-BDTT-Lipo). Notably, T-BDTT-Lipo demonstrated a positive photothermal conversion efficiency of 74% when exposed to an 808 nm laser, along with NIR-II fluorescence imaging capabilities. The efficacy of T-BDTT-Lipo in tumor tissue accumulation and precise targeting of malignant cells has been confirmed through both in vitro and in vivo experiments guided by fluorescence imaging. Under single dose and 808 nm light irradiation, T-BDTT-Lipo generated local intracellular hyperthermia at the tumor site. The elevated temperature additionally exerted a significant inhibitory effect on tumor growth and recurrence, thereby extending the survival duration of mice harboring tumors. The therapeutic nanosystem (T-BDTT-Lipo) proposed in this work demonstrates the enormous potential of semiconducting photothermal agents in photothermal therapy, laying the foundation for the next clinical application.


Assuntos
Terapia Fototérmica , Quinoxalinas , Animais , Camundongos , Quinoxalinas/química , Quinoxalinas/farmacologia , Humanos , Semicondutores , Polímeros/química , Lipossomos/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Peptídeos Cíclicos/química , Feminino
5.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
6.
Adv Sci (Weinh) ; : e2401095, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946578

RESUMO

Conventional androgen deprivation therapy (ADT) targets the androgen receptor (AR) inhibiting prostate cancer (PCa) progression; however, it can eventually lead to recurrence as castration-resistant PCa (CRPC), which has high mortality rates and lacks effective treatment modalities. The study confirms the presence of high glutathione peroxidase 4 (GPX4) expression, a key regulator of ferroptosis (i.e., iron-dependent program cell death) in CRPC cells. Therefore, inducing ferroptosis in CRPC cells might be an effective therapeutic modality for CRPC. However, nonspecific uptake of ferroptosis inducers can result in undesirable cytotoxicity in major organs. Thus, to precisely induce ferroptosis in CRPC cells, a genetic engineering strategy is proposed to embed a prostate-specific membrane antigen (PSMA)-targeting antibody fragment (gy1) in the macrophage membrane, which is then coated onto mesoporous polydopamine (MPDA) nanoparticles to produce a biomimetic nanoplatform. The results indicate that the membrane-coated nanoparticles (MNPs) exhibit high specificity and affinity toward CRPC cells. On further encapsulation with the ferroptosis inducers RSL3 and iron ions, MPDA/Fe/RSL3@M-gy1 demonstrates superior synergistic effects in highly targeted ferroptosis therapy eliciting significant therapeutic efficacy against CRPC tumor growth and bone metastasis without increased cytotoxicity. In conclusion, a new therapeutic strategy is reported for the PSMA-specific, CRPC-targeting platform for ferroptosis induction with increased efficacy and safety.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39041265

RESUMO

Skin cancer, a global burden for particularly white people, is classified as various histopathological types, including malignant melanoma, basal and squamous cell carcinoma, on the basis of affected different skin layers. Clinical adjuvant therapy (electro-chemotherapy, radio- and immuno therapy), surgical techniques (Cryosurgery, laser treatment, dermabrasion, Moh's micrographic surgery), photodynamic treatment and theranostic approaches are confined only for the treatment of serious health issues. Therefore, nanotechnology based approaches, especially nanoemulsion, a non-spontaneous, transparent or translucent, kinetically stable nanostructured (1-1000nm) colloidal dispersion (comprised of oil, water and surfactant/cosurfactant), are being popularised as a potential topical nanocarrier to deliver BCS class II and IV anti-neoplastic drugs attributing to its capacity for both active and passive tumor targeting in controlled or sustained manner and improving bioavailability via enhancing permeabilityretention effect with minimal adverse effects. Numerous research on nanoemulsion for the treatment of both melanoma and non-melanoma skin cancer is only limited to preclinical stages as several physiological variables reduce the effectiveness of nanoemulsion via restricting topical penetration.

8.
Biomed Pharmacother ; 177: 117102, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991303

RESUMO

Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.

9.
Int J Nanomedicine ; 19: 7033-7048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015675

RESUMO

Purpose: The anticancer potential of indomethacin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro, in vivo, and in clinical trials is well known and widely reported in the literature, along with their side effects, which are mainly observed in the gastrointestinal tract. Here, we present a strategy for the application of the old drug indomethacin as an anticancer agent by encapsulating it in nanostructured lipid carriers (NLC). We describe the production method of IND-NLC, their physicochemical parameters, and the results of their antiproliferative activity against selected cancer cell lines, which were found to be higher compared to the activity of free indomethacin. Methods: IND-NLC were fabricated using the hot high-pressure homogenization method. The nanocarriers were physicochemically characterized, and their biopharmaceutical behaviour and therapeutic efficacy were evaluated in vitro. Results: Lipid nanoparticles IND-NLC exhibited a particle size of 168.1 nm, a negative surface charge (-30.1 mV), low polydispersity index (PDI of 0.139), and high encapsulation efficiency (over 99%). IND-NLC were stable for over 60 days and retained integrity during storage at 4 °C and 25 °C. The potential therapeutic benefits of IND-NLC were screened using in vitro cancer models, where nanocarriers with encapsulated drug effectively inhibited the growth of breast cancer cell line MDA-MB-468 at dosage 15.7 µM. Conclusion: We successfully developed IND-NLC for delivery of indomethacin to cancer cells and confirmed their antitumoral efficacy in in vitro studies. The results suggest that indomethacin encapsulated in lipid nanoparticles possesses high anticancer potential. Moreover, the presented strategy is highly promising and may offer a new alternative for future therapeutic drug innovations.


Assuntos
Antineoplásicos , Portadores de Fármacos , Indometacina , Lipídeos , Tamanho da Partícula , Indometacina/química , Indometacina/farmacologia , Indometacina/administração & dosagem , Indometacina/farmacocinética , Humanos , Portadores de Fármacos/química , Lipídeos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
10.
Int J Nanomedicine ; 19: 6693-6715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979534

RESUMO

Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Nanopartículas/química , Lipídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Terapia Genética/métodos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos
11.
Nanotheranostics ; 8(4): 458-472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961887

RESUMO

A cutting-edge non-invasive cancer treatment method called boron neutron capture therapy (BNCT) allows for the removal of cancerous tumor cells with the least possible damage to healthy tissue. It involves the exposure of cancer cells with low-energy thermal neutrons, boron-10 (10B) cellular uptake causes cancer cell death by producing alpha particles and recoiling lithium-7 (7 Li) nuclei. Despite positive outcomes from clinical trials conducted all around the world, these substances have relatively limited tumor selectivity or low boron content per molecule. The development of new boron delivery agents with more selectivity and enhanced boron loading would advance this technique and promote its use in clinics as a primary cancer treatment. As peptide-binding cell surface receptors are typically overexpressed on cancer cells, they can be seen as interesting targets for targeted tumor therapy. The attachment of meta-carboranes to peptide conjugates that target tumor cells specifically by their overexpressed receptors may be a method to get around these problems. A state-of-the-art overview of current developments in the application of BNCT for cancer targeted therapy via peptide conjugation is the goal of this review.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Peptídeos , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Neoplasias/radioterapia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Peptídeos/química , Animais
12.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965775

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.

13.
Talanta ; 277: 126436, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901192

RESUMO

Cancer cells have a high abundance of hypochlorite compared to normal cells, which can be used as the biomarker for imaging cancer cells and tumor. Developing the tumor-targeting fluorescent probe suitable for imaging hypochlorite in vivo is urgently demanded. In this article, based on xanthene dye with a two-photon excited far-red to NIR emission, a tumor-targeting two-photon fluorescent probe (Biotin-HClO) for imaging basal hypochlorite in cancer cells and tumor was developed. For ClO-, Biotin-HClO (20.0 µM) has a linear response range from 15.0 × 10-8 to 1.1 × 10-5 M with a high selectivity and a high sensitivity, a good detection limit of 50 nM and a 550-fold fluorescence enhancement with high signal-to-noise ratio (20 mM PBS buffer solution with 50 % DMF; pH = 7.4; λex = 605 nm; λem = 635 nm). Morover, Biotin-HClO exhibited excellent performance in monitoring exogenous and endogenous ClO- in cells, and has an outstanding tumor-targeting ability. Subsequently, Biotin-HClO has been applied for imaging ClO- in 4T1 tumor tissue to distinguish from normal tissue. Furthermore, Biotin-HClO was successfully employed for high-contrast imaging 4T1 tumor in mouse based on its tumor-targeting ability. All these results proved that Biotin-HClO is a useful analytical tool to detect ClO- and image tumor in vivo.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Fótons , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácido Hipocloroso/análise , Animais , Humanos , Camundongos , Imagem Óptica , Biotina/química , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Raios Infravermelhos
14.
Small ; : e2402040, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829027

RESUMO

The extracellular matrix (ECM) engages in regulatory interactions with cell surface receptors through its constituent proteins and polysaccharides. Therefore, nano-sized extracellular matrix conjugated with doxorubicin (DOX) is utilized to produce extracellular matrix-drug conjugates (ECM-DOX) tailored for targeted delivery to cancer cells. The ECM-DOX nanoparticles exhibit rod-like morphology, boasting a commendable drug loading capacity of 4.58%, coupled with acid-sensitive drug release characteristics. Notably, ECM-DOX nanoparticles enhance the uptake by tumor cells and possess the ability to penetrate endothelial cells and infiltrate tumor multicellular spheroids. Mechanistic insights reveal that the internalization of ECM-DOX nanoparticle is facilitated through clathrin-mediated endocytosis and macropinocytosis, intricately involving hyaluronic acid receptors and integrins. Pharmacokinetic assessments unveil a prolonged blood half-life of ECM-DOX nanoparticles at 3.65 h, a substantial improvement over the 1.09 h observed for free DOX. A sustained accumulation effect of ECM-DOX nanoparticles at tumor sites, with drug levels in tumor tissues surpassing those of free DOX by several-fold. The profound therapeutic impact of ECM-DOX nanoparticles is evident in their notable inhibition of tumor growth, extension of median survival time in animals, and significant reduction in DOX-induced cardiotoxicity. The ECM platform emerges as a promising carrier for avant-garde nanomedicines in the realm of cancer treatment.

15.
Colloids Surf B Biointerfaces ; 241: 113983, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850741

RESUMO

Glioblastoma (GB) is one of the most lethal types of neoplasms with unique anatomic, physiologic, and pathologic features that usually persist after exposure to standard therapeutic modalities. It is biologically aggressive, and the existence of the blood-brain barrier (BBB) limits the efficacy of standard therapies. In this work, we hypothesize the potential of surface-functionalized ultra-small nanostructured lipid carriers (usNLCs) with charge-switchable cell-penetrating peptides (CPPs) to overcome this biological barrier and improve targeted delivery to brain tumor tissues. The big question is: what is the potential of CPPs in directing nanoparticles toward brain tumor tissue? To answer this question, the usNLCs were functionalized with distinct biomolecules [five CPPs, c(RGDfK) and transferrin, Tf] through electrostatic interaction and its ability as a targeting approach to BBB (HBMEC) and glioma cells (U87 cells) evaluated in terms of physicochemical properties, cellular uptake, permeability in a 2D-BBB model, and tumor growth inhibition. Monte Carlo simulations elucidated CPP adsorption patterns. The permeability studies revealed that targeted usNLCs, especially usNLCsTf and usNLCsCPP4, exhibited an increased permeability coefficient compared to the non-targeted usNLCs. Functionalized usNLCs evidenced enhanced uptake in BBB cells, with smaller CPPs showing higher internalization (CPP1 and CPP2). Similarly, functionalized usNLCs exhibited more significant cytotoxicity in glioma cells, with specific CPPs promoting favorable internalization. Analysis of the endocytic pathway indicated that usNLCsCPPs were mainly internalized by direct translocation and caveolae-mediated endocytosis. Optimal usNLCs with dual targeting capabilities to both BBB and GB cells provide a promising therapeutic strategy for GB.

17.
Int J Biol Macromol ; 274(Pt 2): 133186, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885858

RESUMO

Ligand-receptor recognition serves as the fundamental driving force for active targeting, yet it is still constrained by off-target effects. Herein, we demonstrate that circumventing or blocking the mononuclear phagocyte system (MPS) are both viable strategies to address off-target effects. Naturally derived lignin nanoparticles (LNPs) show great potential to block MPS due to its good stability, low toxicity, and degradability. We further demonstrate the impact of LNPs dosage on in vivo tumor targeting and antitumor efficacy. Our results show that a high dose of LNPs (300 mg/kg) leads to significant accumulation at the tumor site for a duration of 14 days after intravenous administration. In contrast, the low-dose counterparts (e.g., 50, 150 mg/kg) result in almost all LNPs accumulating in the liver. This discovery indicates that the liver is the primary site of LNP capture, leaving only the surplus LNPs the chance to reach the tumor. In addition, although cell membrane-engineered LNPs can rapidly penetrate tumors, they are still prone to capture by the liver during subsequent circulation in the bloodstream. Excitingly, comparable therapeutic efficacy is obtained for the above two strategies. Our findings may offer valuable insights into the targeted delivery of drugs for disease treatment.

18.
Int J Biol Macromol ; 273(Pt 2): 133063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880443

RESUMO

The oral delivery of doxorubicin (DOX), an anti-cancer drug, encounters multiple hurdles such as limited gastrointestinal permeability, P-glycoprotein-mediated efflux, brief intestinal residence, and rapid degradation. This study introduced a novel approach utilizing hyaluronic acid (HA)-grafted fatty acid monoglycerides (HGD) to encapsulate DOX, forming HGD-DOX nanoparticles, aimed at enhancing its oral bioavailability. Drug encapsulated by HGD provided several advantages, including extended drug retention in the gastrointestinal tract, controlled release kinetics, and promotion of lymphatic absorption in the intestine. Additionally, HGD-DOX nanoparticles could specifically target CD44 receptors, potentially increasing therapeutic efficacy. The uptake mechanism of HGD-DOX nanoparticles primarily involved clathrin-mediated, caveolin-mediated and macropinocytosis endocytosis. Pharmacokinetic analysis further revealed that HGD significantly prolonged the in vivo residence time of DOX. In vivo imaging and pharmacodynamic studies indicated that HGD possessed tumor-targeting capabilities and exhibited a significant inhibitory effect on tumor growth, while maintaining an acceptable safety profile. Collectively, these findings position HGD-DOX nanoparticles as a promising strategy to boost the oral bioavailability of DOX, offering a potential avenue for improved cancer treatment.


Assuntos
Doxorrubicina , Receptores de Hialuronatos , Ácido Hialurônico , Nanopartículas , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Ácido Hialurônico/química , Animais , Nanopartículas/química , Receptores de Hialuronatos/metabolismo , Humanos , Administração Oral , Camundongos , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Ann Surg Oncol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888861

RESUMO

BACKGROUND: Gastric cancer poses a major diagnostic and therapeutic challenge as surgical resection provides the only opportunity for a cure. Specific labeling of gastric cancer could distinguish resectable and nonresectable disease and facilitate an R0 resection, which could improve survival. METHODS: Two patient-derived gastric cancer lines, KG8 and KG10, were established from surgical specimens of two patients who underwent gastrectomy for gastric adenocarcinoma. Harvested tumor fragments were implanted into the greater curvature of the stomach to establish patient-derived orthotopic xenograft (PDOX) models. M5A (humanized anti-CEA antibody) or IgG control antibodies were conjugated with the near-infrared dye IRDye800CW. Mice received 50 µg of M5A-IR800 or 50 µg of IgG-IR800 intravenously and were imaged after 72 hr. Fluorescence imaging was performed by using the LI-COR Pearl Imaging System. A tumor-to-background ratio (TBR) was calculated by dividing the mean fluorescence intensity of the tumor versus adjacent stomach tissue. RESULTS: M5A-IR800 administration resulted in bright labeling of both KG8 and K10 tumors. In the KG8 PDOX models, the TBR for M5A-IR800 was 5.85 (SE ± 1.64) compared with IgG-IR800 at 0.70 (SE ± 0.17). The K10 PDOX models had a TBR of 3.71 (SE ± 0.73) for M5A-IR800 compared with 0.66 (SE ± 0.12) for IgG-IR800. CONCLUSIONS: Humanized anti-CEA (M5A) antibodies conjugated to fluorescent dyes provide bright and specific labeling of gastric cancer PDOX models. This tumor-specific fluorescent antibody is a promising potential clinical tool to detect the extent of disease for the determination of resectability as well as to visualize tumor margins during gastric cancer resection.

20.
Chemistry ; : e202402019, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923040

RESUMO

Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...