Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970785

RESUMO

Bio-based production of fuels, chemicals and materials is needed to replace current fossil fuel based production. However, bio-based production processes are very costly, so the process needs to be as efficient as possible. Developments in synthetic biology tools has made it possible to dynamically modulate cellular metabolism during a fermentation. This can be used towards two-stage fermentations, where the process is separated into a growth and a production phase, leading to more efficient feedstock utilization and thus potentially lower costs. This article reviews the current status and some recent results in application of synthetic biology tools towards two-stage fermentations, and compares this approach to pre-existing ones, such as nutrient limitation and addition of toxins/inhibitors.

2.
Metab Eng ; 84: 13-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796054

RESUMO

Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in Escherichia coli W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W-H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W-H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.


Assuntos
Acetatos , Escherichia coli , Homosserina , Engenharia Metabólica , Treonina , Escherichia coli/genética , Escherichia coli/metabolismo , Treonina/biossíntese , Treonina/metabolismo , Treonina/genética , Acetatos/metabolismo , Homosserina/metabolismo , Homosserina/análogos & derivados , Homosserina/genética , Homosserina/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Bioresour Bioprocess ; 11(1): 34, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647614

RESUMO

Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.

4.
Bioresour Technol ; 399: 130588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490460

RESUMO

In this work, a novel biofilm-based fermentation of Beauveria bassiana was employed to convert R-2- phenoxypropionic acid (R-PPA) to R-2-(4-hydroxyphenoxy) propionic acid (R-HPPA). The biofilm culture model of Beauveria bassiana produced a significantly higher R-HPPA titer than the traditional submerged fermentation method. Mannitol dosage, tryptone dosage, and initial pH were the factors that played a significant role in biofilm formation and R-HPPA synthesis. Under the optimal conditions, the maximum R-HPPA titer and productivity approached 22.2 g/L and 3.2 g/(L·d), respectively. A two-stage bioreactor combining agitation and static incubation was developed to further increase R-HPPA production. The process was optimized to achieve 100 % conversion of R-PPA, with a maximum R-HPPA titer of 50 g/L and productivity of 3.8 g/(L·d). This newly developed biofilm-based two-stage fermentation process provides a promising strategy for the industrial production of R-HPPA and related hydroxylated aromatic compounds.


Assuntos
Beauveria , Fermentação , Beauveria/química , Reatores Biológicos , Propionatos
5.
Food Sci Biotechnol ; 33(5): 1207-1219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440689

RESUMO

Microbial treatment can reduce the antinutritional factors and allergenic proteins in corn-soybean meal mixture (CSMM), but the role of the microbial community in hypoallergenicity and digestibility during the fermentation process remains unclear. Therefore, the fermentation strains of Bacillus and LAB were determined, and the compatibility and fermentation process of two-stage solid fermentation composite bacteria were optimized, and the dynamic changes in physicochemical property and microbial community during two-stage fermentation were investigated. Results showed that Bacillus subtilis NCUBSL003 and Lactobacillus acidophilus NCUA065016 were the best fermentation combinations. The optimal fermentation conditions were inoculum 7.14%, solid-liquid ratio of 1:0.88 and fermentation time of 74.30 h. The contents of TI, ß-conglycinin and glycinin decreased significantly after fermentation. Besides, TCA-SP, small peptides and FAA increased. Bacillus and Lactobacillus were the main genera. Pathogenic bacteria genera were inhibited effectively. This study suggests the feasibility of two-stage fermentation in improving the nutrient values and safety of the CSMM. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01426-7.

6.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008225

RESUMO

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Assuntos
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentação , Metanol/metabolismo , Trifosfato de Adenosina/metabolismo , Engenharia Metabólica/métodos
7.
Bioresour Technol ; 388: 129716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689118

RESUMO

Nitrate plays a crucial role in the high-efficient fermentation production of rhamnolipids (RLs). However, the underlying mechanism remains unclear. Firstly, by knocking out the restriction endonuclease PaeKI and utilizatiing the endogenous CRISPR-Cas-mediated single-plasmid recombineering system, a genome editing system for P. aeruginosa KT1115 has been established. Secondly, an engineered strain KT1115ΔpaeKIΔnirS was obtained with a 87% of reduction in nitric oxide (NO) accumulation and a 93% of reduction in RLs production, revealing the crucial role of NO signaling molecule produced from nitrate metabolism in RLs production. Finally, by combining metabolic engineering of the nitrate metabolism pathway with nitrogen feeding, a new two-stage fermentation process was developed. The fermentation production period was reduced from 168 h to 120 h while achieving a high yield of 0.8 g/g, and the average productivity increased by 55%. In all, this study provides a novel insights in the RLs biosynthesis and fermentation control strategy.

8.
Biotechnol Biofuels Bioprod ; 16(1): 76, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143155

RESUMO

BACKGROUND: Polycyclic triterpenoids (PTs) are common in plants, and have attracted considerable interest due to their remarkable biological activities. Currently, engineering the ergosterol synthesis pathway in Saccharomyces cerevisiae is a safe and cost-competitive way to produce triterpenoids. However, the strict regulation of ERG1 involved in the epoxidation of squalene limits the triterpenoid production. RESULTS: In this study, we found that the decrease in ERG7 protein level could dramatically boost the epoxidation of squalene by improving the protein stability of ERG1. We next explored the potential factors that affected the degradation process of ERG1 and confirmed that ERG7 was involved in the degradation process of ERG1. Subsequently, expression of four different triterpene cyclases utilizing either 2,3-oxidosqualene or 2,3:22,23-dioxidosqualene as the substrate in ERG7-degraded strains showed that the degradation of ERG7 to prompt the epoxidation of squalene could significantly increase triterpenoid production. To better display the potential of the strategy, we increased the supply of 2,3-oxidosqualene, optimized flux distribution between ergosterol synthesis pathway and ß-amyrin synthesis pathway, and modified the GAL-regulation system to separate the growth stage from the production stage. The best-performing strain ultimately produced 4216.6 ± 68.4 mg/L of ß-amyrin in a two-stage fed-fermentation (a 47-fold improvement over the initial strain). CONCLUSIONS: This study showed that deregulation of the native restriction in ergosterol pathway was an effective strategy to increase triterpenoid production in yeast, which provided a new insight into triterpenoids biosynthesis.

9.
Bioresour Technol ; 377: 128896, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933576

RESUMO

Hyaluronic acid is a kind of mucopolysaccharide that has wide applications in cosmetics, health food, and orthopedics. Using Streptococcus zooepidemicus ATCC 39920 as parent, a beneficial mutant SZ07 was obtained by UV mutagenesis, giving 1.42 g/L hyaluronic acid in shake flasks. To enhance the efficiency of hyaluronic acid production, a semi-continuous fermentation process consisted of two-stage 3-L bioreactors was developed, in which 1.01 g/L/h productivity and 14.60 g/L hyaluronic acid were obtained. To further enhance the titer of hyaluronic acid, recombinant hyaluronidase SzHYal was added into 2nd stage bioreactor at 6 h to reduce the viscosity of broth. The highest hyaluronic acid titer of 29.38 g/L was achieved with a productivity of 1.13 g/L/h at 300 U/L SzHYal after 24 h. This newly developed semi-continuous fermentation process provides a promising strategy for the industrial production of hyaluronic acid and related polysaccharides.


Assuntos
Streptococcus equi , Fermentação , Ácido Hialurônico , Reatores Biológicos
10.
Bioresour Technol ; 364: 128080, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216283

RESUMO

Carotenoids are widely utilized in the food, pharmaceutical and nutraceutical industries. Here, Kluyveromyces marxianus was engineered to overproduce carotenoids from corncob hydrolysate or xylose mother liquid (XML, a byproduct of commercial xylose purification). First, the toxicity of fat-soluble carotenoids to cells was reduced by employing xylose inducible promoters using with a two-temperature strategy to separate cell growth and product accumulation. Then, through further engineering and optimization of the carotenoid biosynthesis pathway, 1506.7 mg/L lycopene, 988.5 mg/L ß-carotene or 142.9 mg/L astaxanthin were produced with glucose and xylose by K. marxianus. Finally, 397.7 mg/L and 279.7 mg/L lycopene, 297.3 mg/L and 108.8 mg/L ß-carotene, and 86.4 mg/L and 56.8 mg/L astaxanthin were produced with nonsterilized andnondetoxified XML or corncob hydrolysate after nitrogen source optimization. To our knowledge, the produced amounts of lycopene, ß-carotene and astaxanthin from lignocellulose biomass by yeast in this study were higher than those in previous reports.

11.
Metab Eng ; 73: 104-113, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803501

RESUMO

Efficient microbial cell factory for the production of homoserine from glucose has been developed by iterative and rational engineering of Escherichia coli W3110. The whole pathway from glucose to homoserine was divided into three groups, namely, glucose transport and glycolysis ('up-stream'), TCA and glyoxylate cycles ('mid-stream'), and homoserine module (conversion of aspartate to homoserine and its secretion; 'down-stream'), and the carbon flux in each group as well as between the groups were accelerated and balanced. Altogether, ∼18 genes were modified for active and consistent production of homoserine during both the actively-growing and non-growing stages of cultivation. Finally, fed-batch, two-stage bioreactor experiments, separating the growth from the production stage, were conducted for 61 h, which gave the high titer of 110.8 g/L, yield of 0.64 g/g glucose and volumetric productivity of 1.82 g/L/h, with an insignificant amount of acetate (<0.5 g/L) as the only noticeable byproduct. The metabolic engineering strategy employed in this study should be applicable for the biosynthesis of other amino acids or chemicals derived from aspartic acid.


Assuntos
Homosserina , Engenharia Metabólica , Reatores Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/genética , Glucose/metabolismo , Homosserina/metabolismo
12.
Bioresour Technol ; 361: 127677, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878768

RESUMO

The resource utilization of food waste is crucial, and single-cell protein (SCP) is attracting much attention due to its high value. This study aimed to convert food waste to SCP by Yarrowia lipolytica. It was found the chemical oxygen demand (COD) removal rate 77 ± 1.70% was achieved at 30 g COD/L with the protein content of biomass only 24.1 ± 0.4% w/w biomass dry weight (BDW) in one-stage fermentation system. However, the protein content was significantly increased to 38.8 ± 0.2% w/w BDW with the COD removal rate 85.5 ± 0.7% by a two-stage fermentation process, where the food waste was firstly anaerobically fermented to volatile fatty acids and then converted to SCP with Yarrowia lipolytica. Transcriptomic analysis showed that the expression of SCP-producing genes including ATP citrate (pro-S)-lyase and fumarate hydratase class II were up-regulated in the two-stage transformation, resulting in more organic degradation for SCP synthesis.


Assuntos
Eliminação de Resíduos , Yarrowia , Biomassa , Fermentação , Alimentos , Yarrowia/genética , Yarrowia/metabolismo
13.
Bioresour Technol ; 354: 127227, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35477106

RESUMO

To take full advantage of refractory dissolved organic matters (rDOMs) and generate sufficient nitrate for domestic sewage treatment, this study presented a novel integrated fermentation, nitrification, denitratation and anammox (IFNDA) process in a combined ABR-CSTR reactor. The results showed that an advanced total nitrogen (TN) removal efficiency of 94.1% was obtained after over 190 days operation, resulting in effluent TN concentration as low as 3.6 mg/L. The system nitrogen removal was dominated by anammox with a high proportion of 88.6%. The high conversion rate of acetic acid (54.0%) and volatile fatty acids (64.5%) from rDOMs in domestic sewage by in-situ fermentation drove efficient denitratation. Microflora analysis indicated that the enriched Commamonas (3.5%) and Longilinea (3.3%) dominated hydrolysis and acidogenesis of organics, and Methanosaeta (9.0%) obligated acetoclastic methanogenesis in two-stage fermentation process. Thauera (8.4%) and Candidatus Brocadia (2.5%) were the core bacteria for nitrogen metabolism in the IFNDA system.


Assuntos
Nitrificação , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Matéria Orgânica Dissolvida , Fermentação , Nitrogênio , Oxirredução , Águas Residuárias
14.
Animals (Basel) ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34438793

RESUMO

The effect of soybean peptides from fermented soybean meal on the intestinal immunity and tight junction of broilers was assessed. Roughly, two-stage fermented soybean meal prepared with Bv and Lb (FSBMB+L), which has nearly three times higher soluble peptides than soybean meal (SBM), and reduced galacto-oligosaccharide (GOS) content and allergen protein. The one-stage fermented by Bv (FSBMB) has the highest soluble peptides, while commercial lactic acid bacteria (FSBML) has the highest Lactic acid bacteria count; these were used to compare the differences in the process. Ross308 broilers (n = 320) were divided into four groups: SBM diet and a diet replaced with 6% FSBMB+L, FSBMB, or FSBML. The growth performance was recorded during the experiment, and six birds (35-day-old) per group were euthanized. Analysis of their jejunum and ileum showed that the fermented soybean meal significantly improved the villus height in the jejunum (p < 0.05) and reduced the crypt hyperplasia. The FSBMB group had the highest reducing crypt depth; however, the FSBMB+L group had the highest villus height/crypt depth in the ileum (p < 0.05). In the jejunum, the relative mRNA of CLDN-1 and Occludin increased 2-fold in the treatments, and ZO-1 mRNA increased 1.5 times in FSBML and FSBMB+L (p < 0.05). Furthermore, the level of NF-κB and IL-6 mRNAs in FSBML increased, respectively, by 4 and 2.5 times. While FSBMB, along with FSBMB+L, had a 1.5-fold increase in the mRNA of IL-10, that of NF-κB increased 2-fold. FSBMB+L and FSBMB singly led to a 2- and 3-fold increase in IL-6 mRNA, respectively (p < 0.05). FSBMB and FSBMB+L can also upregulate MUC2 in the jejunum (p < 0.05). In short, using the soybean peptides from two-stage fermented soybean meal can ameliorate the negative factors of SBM and effectively regulate immune expression and intestinal repair, which will help broilers maintain intestinal integrity.

15.
Microorganisms ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442803

RESUMO

The high operating cost is currently a limitation to industrialize microbial lipids production by the yeast Lipomyces starkeyi. To explore economic fermentation technology, the two-stage fermentation of Lipomyces starkeyi using yeast extract peptone dextrose (YPD) medium, orange peel (OP) hydrolysate medium, and their mixed medium were investigated for seven days by monitoring OD600 values, pH values, cell growth status, C/N ratios, total carbon concentration, total nitrogen concentration, residual sugar concentration, lipid content, lipid titer, and fatty acids profiles of lipids. The results showed that two-stage fermentation with YPD and 50% YPD + 50% OP medium contributed to lipid accumulation, leading to larger internal lipid droplets in the yeast cells. However, the cells in pure OP hydrolysate grew abnormally, showing skinny and angular shapes. Compared to the one-stage fermentation, the two-stage fermentation enhanced lipid contents by 18.5%, 27.1%, and 21.4% in the flasks with YPD medium, OP medium, and 50%YPD + 50%OP medium, and enhanced the lipid titer by 77.8%, 13.6%, and 63.0%, respectively. The microbial lipids obtained from both one-stage and two-stage fermentation showed no significant difference in fatty acid compositions, which were mainly dominated by palmitic acid (33.36-38.43%) and oleic acid (46.6-48.12%). Hence, a mixture of commercial medium and lignocellulosic biomass hydrolysate could be a promising option to balance the operating cost and lipid production.

16.
Electron. j. biotechnol ; 51: 88-94, May. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1343452

RESUMO

BACKGROUND: Large amounts of b-alanine are required in fine chemical and pharmaceutical synthesis and other fields. Profitable and green methods are required for the industrial production of b-alanine. RESULTS: Replacing endogenous panD of Escherichia coli with heterologous CgpanD from Corynebacterium glutamicum enabled b-alanine synthesis of 0.67 g/L by strain B0016-082BB. Overexpressing CgpanD on both plasmids and chromosomes to enhance the rate-limiting step improved the b-alanine titer to 4.25 g/L in strain B0016-083BB/pPL451-panD with a slighter metabolic burden. Growth factors were introduced by addition of yeast extract, and 6.65 g/L of b-alanine was synthesized by strain B0016- 083BB/pPL451-panD in the M9-3Y medium. CONCLUSIONS: Enhancement of the rate-limiting steps in the b-alanine biosynthetic pathway, recruitment of the temperature-sensitive inducible pL promoter, and optimization of the fermentation process could efficiently increase b-alanine production in E. coli.


Assuntos
beta-Alanina/biossíntese , Temperatura , Escherichia coli , Fermentação
17.
AMB Express ; 11(1): 23, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547539

RESUMO

Bacillus velezensis is widely used for agricultural biocontrol, due to its ability to enhance plant growth while suppressing the growth of microbial pathogens. However, there are few reports on its application in fermented feed. Here, a two-stage solid-state fermentation process using Bacillus velezensis followed by Lactobacillus plantarum was developed to degrade antinutritional factors (ANFs) and improve soybean meal (SBM) nutrition for animal feed. The process was evaluated for performance in degrading SBM antinutritional factors, dynamic changes in physicochemical characteristics, microorganisms and metabolites. After two-stage fermentation, degradation rates of glycinin and ß-conglycinin contents reached 78.60% and 72.89%, respectively. The pH of fermented SBM (FSBM) decreased to 4.78 ± 0.04 and lactic acid content reached 183.38 ± 4.86 mmol/kg. NSP-degrading enzymes (Non-starch polysaccharide, NSPases) and protease were detected from the fermented product, which caused the changed microstructure of SBM. Compared to uninoculated SBM, FSBM exhibited increased proportions of crude protein (51.97 ± 0.44% vs. 47.28 ± 0.34%), Ca, total phosphorus (P), and trichloroacetic acid-soluble protein (11.79 ± 0.13% vs. 5.07 ± 0.06%). Additionally, cellulose and hemicellulose proportions declined by 22.10% and 39.15%, respectively. Total amino acid content increased by 5.05%, while the difference of AA content between the 24 h, 48 h and 72 h of fermentation was not significant (P > 0.05). Furthermore, FSBM also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. These results demonstrated that two-stage SBM fermentation process based on Bacillus velezensis 157 and Lactobacillus plantarum BLCC2-0015 is an effective approach to reduce ANFs content and improve the quality of SBM feed.

18.
Bioprocess Biosyst Eng ; 44(2): 247-257, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32944865

RESUMO

Cell growth and product formation are two critical processes in polysaccharide welan biosynthesis, but the conflict between them is often encountered. In this study, a temperature-dependent strategy was designed for two-stage welan production through overexpressing heat shock proteins in Sphingomonas sp. The first stage was cell growth phase with higher TCA cycle activity at 42 °C; the second stage was welan formation phase with higher precursor synthesis pathway activity at 37 °C. The highest welan concentration 37.5 g/L was achieved after two-stage process. Ultimately, this strategy accumulated welan yield of 79.2 g/100 g glucose and productivity of 0.62 g/L/h at 60 h, which were the best reported results so far. The duration of fermentation was shortened. Besides, rheological behavior of welan gum solutions remained stable at wide range of temperature, pH, and NaCl. These results indicated that this approach efficiently improved welan synthesis.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico , Temperatura Alta , Polissacarídeos Bacterianos , Sphingomonas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Sphingomonas/genética , Sphingomonas/metabolismo
19.
Metab Eng ; 62: 198-206, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961297

RESUMO

L-valine is an essential amino acid and an important amino acid in the food and feed industry. The relatively low titer and low fermentation yield currently limit the large-scale application of L-valine. Here, we constructed a chromosomally engineered Escherichia coli to efficiently produce L-valine. First, the synthetic pathway of L-valine was enhanced by heterologous introduction of a feedback-resistant acetolactate acid synthase from Bacillus subtilis and overexpression of other two enzymes in the L-valine synthetic pathway. For efficient efflux of L-valine, an exporter from Corynebacterium glutamicum was subsequently introduced. Next, the precursor pyruvate pool was increased by knockout of GTP pyrophosphokinase and introduction of a ppGpp 3'-pyrophosphohydrolase mutant to facilitate the glucose uptake process. Finally, in order to improve the redox cofactor balance, acetohydroxy acid isomeroreductase was replaced by a NADH-preferring mutant, and branched-chain amino acid aminotransferase was replaced by leucine dehydrogenase from Bacillus subtilis. Redox cofactor balance enabled the strain to synthesize L-valine under oxygen-limiting condition, significantly increasing the yield in the presence of glucose. Two-stage fed-batch fermentation of the final strain in a 5 L bioreactor produced 84 g/L L-valine with a yield and productivity of 0.41 g/g glucose and 2.33 g/L/h, respectively. To the best of our knowledge, this is the highest L-valine titer and yield ever reported in E. coli. The systems metabolic engineering strategy described here will be useful for future engineering of E. coli strains for the industrial production of L-valine and related products.


Assuntos
Corynebacterium glutamicum , Escherichia coli , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Valina/genética
20.
N Biotechnol ; 59: 59-64, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32693028

RESUMO

The design and development of new routes for the production of sustainable bulk-chemicals requires focus on feedstock, conversion technology and downstream product recovery. This brief article discusses some of the constraints with using fermentation and suggests the removal of some constraints by using microbial biocatalysis or enzyme biocatalysis, which give a number of benefits in the context of the requirements for bulk-chemical production. Some potential process concepts are described, for products in the suitable low-price range. These examples (biodiesel, furfurals and amines) are used to illustrate the power of biocatalysis. Suggestions for future research efforts beyond molecular biology, involving process-based concepts, are also discussed.


Assuntos
Aminas/metabolismo , Biocombustíveis , Biotecnologia , Fermentação , Furaldeído/metabolismo , Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...