Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Andrology ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993010

RESUMO

BACKGROUND: Mammalian spermatozoa need to undergo a process named capacitation to be able to fertilize an oocyte. During their journey in the female tract, spermatozoa obtain energy while exposed to a changing environment containing a variety of metabolic substrates. The energy requirements for sperm capacitation are species-specific. In addition, the available energy source can hinder the process of sperm capacitation and eventually the acrosome reaction. OBJECTIVES: To evaluate whether the metabolic substrates available in the in vitro sperm capacitation medium allow or interfere with the pig sperm capacitation process. MATERIAL AND METHODS: The effect of different metabolic substrates on sperm capacitation process was evaluated by analyzing phosphorylation in the p32 protein; the acrosome reaction and the ATP intracellular content. RESULTS: The presence of glucose in the in vitro capacitating medium diminishes, in a concentration-dependent manner, parameters associated with the capacitated status: induced acrosome exocytosis, plasma membrane destabilization, and protein tyrosine phosphorylation. Conversely, sperm incubation with pyruvate or lactate, either individually or in combination, allows the attainment of the capacitated status. Unexpectedly, pig spermatozoa incubated without any extracellular energy substrates or with a non-metabolizable substrate (l-glucose) for 4 h displayed similar sperm viability to the control and exhibited a capacitated phenotype. The capacitation-like phenotype observed in starved pig spermatozoa (absence of glucose, lactate, and pyruvate) was dependent on extracellular bicarbonate and calcium levels, and these spermatozoa exhibited lower intracellular ATP content compared to those not capacitated. Nevertheless, the intracellular content of calcium was not modified in comparison to the control. DISCUSSION AND CONCLUSIONS: Our findings suggest that the metabolic substrates used to fuel pig sperm metabolism are important in achieving the capacitated status. The results of this work could be used to refine the capacitating medium employed in pig in vitro fertilization.

2.
Endocrinology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954536

RESUMO

BACKGROUND: Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic ß cells are implicated in diabetes. Nephrin signaling is mediated in part through its three cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and ß cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate ß cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS: To further explore the role of nephrin YDxV phosphorylation in ß cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS: Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between WT and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION: Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve ß cell function.

3.
Se Pu ; 42(7): 693-701, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966977

RESUMO

Tyrosine phosphorylation, a common post-translational modification process for proteins, is involved in a variety of biological processes. However, the abundance of tyrosine-phosphorylated proteins is very low, making their identification by mass spectrometry (MS) is difficult; thus, milligrams of the starting material are often required for their enrichment. For example, tyrosine phosphorylation plays an important role in T cell signal transduction. However, the number of primary T cells derived from biological tissue samples is very small, and these cells are difficult to culture and expand; thus, the study of T cell signal transduction is usually carried out on immortalized cell lines, which can be greatly expanded. However, the data from immortalized cell lines cannot fully mimic the signal transduction processes observed in the real physiological state, and they usually lead to conclusions that are quite different from those of primary T cells. Therefore, a highly sensitive proteomic method was developed for studying tyrosine phosphorylation modification signals in primary T cells. To address the issue of the limited T cells numbers, a comprehensive protocol was first optimized for the isolation, activation, and expansion of primary T cells from mouse spleen. CD3+ primary T cells were successfully sorted; more than 91% of the T cells collected were well activated on day 2, and the number of T cells expanded to over 7-fold on day 4. Next, to address the low abundance of tyrosine-phosphorylated proteins, we used SH2-superbinder affinity enrichment and immobilized Ti4+affinity chromatography (Ti4+-IMAC) to enrich the tyrosine-phosphorylated polypeptides of primary T cells that were co-stimulated with anti-CD3 and anti-CD28. These polypeptides were resolved using nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Finally, 282 tyrosine phosphorylation sites were successfully identified in 1 mg of protein, including many tyrosine phosphorylation sites on the immunoreceptor tyrosine-based activation motif (ITAM) in the intracellular region of the T cell receptor membrane protein CD3, as well as the phosphotyrosine sites of ZAP70, LAT, VAV1, and other proteins related to signal transduction under costimulatory conditions. In summary, to solve the technical problems of the limited number of primary cells, low abundance of tyrosine-phosphorylated proteins, and difficulty of detection by MS, we developed a comprehensive proteomic method for the in-depth analysis of tyrosine phosphorylation modification signals in primary T cells. This protocol may be applied to map signal transduction networks that are closely related to physiological states.


Assuntos
Fosfoproteínas , Proteoma , Linfócitos T , Tirosina , Animais , Camundongos , Fosforilação , Fosfoproteínas/análise , Proteoma/análise , Proteômica/métodos , Transdução de Sinais
4.
Phytomedicine ; 130: 155785, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823342

RESUMO

BACKGROUND: Oxidative stress is the main cause of many diseases, but because of its complex pathogenic factors, there is no clear method for treating it. Ginseng total saponin (GTS) an important active ingredients in Panax ginseng C.A. Mey (PG) and has potential therapeutic ability for oxidative stress due to various causes. However, the molecular mechanism of GTS in the treating oxidative stress damage in red blood cells (RBCs) is still unclear. PURPOSE: This study aimed to examine the protective effect of GTS on RBCs under oxidative stress damage and to determine its potential mechanism. METHODS: The oxidative stress models of rat RBCs induced by hydrogen peroxide (H2O2) and exhaustive swimming in vivo and in vitro was used. We determined the cell morphology, oxygen carrying capacity, apoptosis, antioxidant capacity, and energy metabolism of RBCs. The effect of tyrosine phosphorylation (pTyr) of Band 3 protein on RBCs glycolysis was also examined. RESULTS: GTS reduced the hemolysis of RBCs induced by H2O2 at the lowest concentration. Moreover, GTS effectively improved the morphology, enhanced the oxygen carrying capacity, and increased antioxidant enzyme activity, adenosine triphosphate (ATP) levels, and adenosine triphosphatase (ATPase) activity in RBCs. GTS also promoted the expression of membrane proteins in RBCs, inhibited pTyr of Band 3 protein, and further improved glycolysis, restoring the morphological structure and physiological function of RBCs. CONCLUSIONS: This study shows, that GTS can protect RBCs from oxidative stress damage by improving RBCs morphology and physiological function. Changes in pTyr expression and its related pTyr regulatory enzymes before and after GTS treatment suggest that Band 3 protein is the main target of GTS in the treating endogenous and exogenous oxidative stress. Moreover, GTS can enhance the glycolytic ability of RBCs by inhibiting pTyr of Band 3 protein, thereby restoring the function of RBCs.


Assuntos
Eritrócitos , Glicólise , Peróxido de Hidrogênio , Estresse Oxidativo , Panax , Ratos Sprague-Dawley , Saponinas , Tirosina , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Saponinas/farmacologia , Animais , Glicólise/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/farmacologia , Tirosina/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Hemólise/efeitos dos fármacos , Antioxidantes/farmacologia , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Apoptose/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 121(25): e2321890121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857388

RESUMO

In bacteria, attenuation of protein-tyrosine phosphorylation occurs during oxidative stress. The main described mechanism behind this effect is the H2O2-triggered conversion of bacterial phospho-tyrosines to protein-bound 3,4-dihydroxyphenylalanine. This disrupts the bacterial tyrosine phosphorylation-based signaling network, which alters the bacterial polysaccharide biosynthesis. Herein, we report an alternative mechanism, in which oxidative stress leads to a direct inhibition of bacterial protein-tyrosine kinases (BY-kinases). We show that DefA, a minor peptide deformylase, inhibits the activity of BY-kinase PtkA when Bacillus subtilis is exposed to oxidative stress. High levels of PtkA activity are known to destabilize B. subtilis pellicle formation, which leads to higher sensitivity to oxidative stress. Interaction with DefA inhibits both PtkA autophosphorylation and phosphorylation of its substrate Ugd, which is involved in exopolysaccharide formation. Inactivation of defA drastically reduces the capacity of B. subtilis to cope with oxidative stress, but it does not affect the major oxidative stress regulons PerR, OhrR, and Spx, indicating that PtkA inhibition is the main pathway for DefA involvement in this stress response. Structural analysis identified DefA residues Asn95, Tyr150, and Glu152 as essential for interaction with PtkA. Inhibition of PtkA depends also on the presence of a C-terminal α-helix of DefA, which resembles PtkA-interacting motifs from known PtkA activators, TkmA, SalA, and MinD. Loss of either the key interacting residues or the inhibitory helix of DefA abolishes inhibition of PtkA in vitro and impairs postoxidative stress recovery in vivo, confirming the involvement of these structural features in the proposed mechanism.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Estresse Oxidativo , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Fosforilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Tirosina Quinases/metabolismo , Peróxido de Hidrogênio/metabolismo , Amidoidrolases/metabolismo
6.
Elife ; 132024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780416

RESUMO

Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.


Assuntos
Conexinas , Proteínas do Tecido Nervoso , Quinases da Família src , Fosforilação , Conexinas/metabolismo , Conexinas/genética , Humanos , Quinases da Família src/metabolismo , Quinases da Família src/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Tirosina/metabolismo , Animais , Células HEK293 , Camundongos
7.
Mol Neurobiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592586

RESUMO

Proper regulation of N-methyl-D-aspartate-type glutamate receptor (NMDA receptor) expression is responsible for excitatory synaptic functions in the mammalian brain. NMDA receptor dysfunction can cause various neuropsychiatric disorders and neurodegenerative diseases. Posttranslational protein S-palmitoylation, the covalent attachment of palmitic acid to intracellular cysteine residues via thioester bonds, occurs in the carboxyl terminus of GluN2B, which is the major regulatory NMDA receptor subunit. Mutations of three palmitoylatable cysteine residues in the membrane-proximal cluster of GluN2B to non-palmitoylatable serine (3CS) lead to the dephosphorylation of GluN2B Tyr1472 in the hippocampus and cerebral cortex, inducing a reduction in the surface expression of GluN2B-containig NMDA receptors. Furthermore, adult GluN2B 3CS homozygous mice demonstrated a definite clasping response without abnormalities in the gross brain structure, other neurological reflexes, or expression levels of synaptic proteins in the cerebrum. This behavioral disorder, observed in the GluN2B 3CS knock-in mice, indicated that complex higher brain functions are coordinated through the palmitoylation-dependent regulation of NMDA receptors in excitatory synapses.

8.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607064

RESUMO

The global fall in male fertility is a complicated process driven by a variety of factors, including environmental exposure, lifestyle, obesity, stress, and aging. The availability of assisted reproductive technology (ART) has allowed older couples to conceive, increasing the average paternal age at first childbirth. Advanced paternal age (APA), most often considered male age ≥40, has been described to impact several aspects of male reproductive physiology. In this prospective cohort study including 200 normozoospermic patients, 105 of whom were ≤35 years (non-APA), and 95 of whom were ≥42 years (APA), we assessed the impact of paternal age on different endpoints representative of sperm quality and cryopreservation tolerance. Non-APA patients had superior fresh semen quality; DNA fragmentation was notably increased in APA as compared to non-APA individuals (21.7% vs. 15.4%). Cryopreservation further increased the DNA fragmentation index in APA (26.7%) but not in non-APA patients. Additionally, APA was associated with increased mtDNAcn in both fresh and frozen/thawed sperm, which is indicative of poorer mitochondrial quality. Cryopreservation negatively impacted acrosome integrity in both age groups, as indicated by reduced incidences of unreacted acrosome in relation to fresh counterparts in non-APA (from 71.5% to 57.7%) and APA patients (from 75% to 63%). Finally, cryopreservation significantly reduced the phosphorylation status of proteins containing tyrosine residues in sperm from young males. Therefore, the present findings shed light on the effects of paternal age and cryopreservation on sperm quality and serve as valuable new parameters to improve our understanding of the mechanisms underlying sperm developmental competence that are under threat in current ART practice.


Assuntos
Idade Paterna , Análise do Sêmen , Humanos , Masculino , Estudos Prospectivos , Sêmen , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Criopreservação
9.
World J Psychiatry ; 14(3): 445-455, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617985

RESUMO

BACKGROUND: Epidemiological studies have revealed a correlation between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D). Insulin resistance in the brain is a common feature in patients with T2D and AD. KAT7 is a histone acetyltransferase that participates in the modulation of various genes. AIM: To determine the effects of KAT7 on insulin patients with AD. METHODS: APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes, respectively. An in vitro model of AD was established by Aß stimulation. Insulin resistance was induced by chronic stimulation with high insulin levels. The expression of microtubule-associated protein 2 (MAP2) was assessed using immunofluorescence. The protein levels of MAP2, Aß, dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), IRS-1, p-AKT, total AKT, p-GSK3ß, total GSK3ß, DYRK1A, and KAT7 were measured via western blotting. Accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and SOD activity was measured to determine cellular oxidative stress. Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation, respectively. Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR. A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A. RESULTS: KAT7 expression was suppressed in the AD mice. Overexpression of KAT7 decreased Aß accumulation and MAP2 expression in AD brains. KAT7 overexpression decreased ROS and MDA levels, elevated SOD activity in brain tissues and neurons, and simultaneously suppressed neuronal apoptosis. KAT7 upregulated levels of p-AKT and p-GSK3ß to alleviate insulin resistance, along with elevated expression of DYRK1A. KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A. HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion. CONCLUSION: We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation. Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.

10.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553121

RESUMO

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Peptídeos , Substâncias Macromoleculares , Adsorção , Impressão Molecular/métodos
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 35-46, 2024 Jan 19.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38426691

RESUMO

Innate nucleic acid sensing is a ubiquitous and highly conserved immunological process, which is pivotal for monitoring and responding to pathogenic invasion and cellular damage, and central to host defense, autoimmunity, cell fate determination and tumorigenesis. Tyrosine phosphorylation, a major type of post-translational modification, plays a critical regulatory role in innate immune sensing pathway. Core members of nucleic acid sensing signaling pathway, such as cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1), are all subject to activity regulation triggered by tyrosine phosphorylation, thereby affecting the host antiviral defense and anti-tumor immunity under physiological or pathological conditions. This review summarizes the recent advances in research on tyrosine kinases and tyrosine phosphorylation in regulation of nucleic acid sensing. The function and potential applications of targeting tyrosine phosphorylation in anti-tumor immunity is disussed to provide insights for understanding and expanding new anti-tumor strategies.


Assuntos
Ácidos Nucleicos , Proteínas Tirosina Quinases , Imunidade Inata , Transdução de Sinais , Tirosina
12.
Eur J Cell Biol ; 103(1): 151384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215579

RESUMO

Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.


Assuntos
Moléculas de Adesão Celular , Fagocitose , Animais , Humanos , Citoesqueleto , Transdução de Sinais , Fosforilação , Antígeno Carcinoembrionário
13.
Sci Total Environ ; 914: 169918, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190899

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 µg/kg bw and 50 µg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 µg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.


Assuntos
Dietilexilftalato , Células-Tronco Mesenquimais , Osteoporose , Ácidos Ftálicos , Feminino , Camundongos , Animais , Dietilexilftalato/toxicidade , PPAR gama/metabolismo , Osteogênese , Camundongos Endogâmicos C57BL , Osteoporose/induzido quimicamente , Células-Tronco Mesenquimais/metabolismo
14.
Cell Biochem Funct ; 42(1): e3930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269523

RESUMO

Mammalian sperm remain quiescent but fertile for several weeks in cauda epididymis. Although several sperm quiescent factors of epididymal plasma have been identified in goat, pig and cattle; however, little is known in sheep. In the present study, purification and characterization of a novel sperm quiescent protein of ovine cauda epididymal plasma (CEP) was carried out. The sperm quiescent protein was partially purified by hydroxyapatite gel adsorption chromatography followed by DEAE-sepharose® anion exchange chromatography. In the latter, the sperm quiescent activity was eluted both in 0.05 and 0.2 M potassium phosphate buffer (pH 7.5) fractions having a predominant protein of about 80 and 70 kDa with 87% and 63% homogeneity, respectively. The proteins were designated as motility-inhibitory factor of sheep I and II (MIFS-I and II), respectively. Significant (about 60%) inhibition of sperm motility was observed following treatment of cauda epididymal sperm with 6 and 12 µg/mL of partially purified MIFS-I and II, respectively. Specific activities of the partially purified MIFS-I and II were 563 and 261 U/mg of protein, while the fold-purification of the activity were 5119 and 2373, respectively. Both the proteins were heat-labile and the activity was completely lost following incubation at 100°C for 5 min. Further, the partially purified MIFS-I (5 µg/mL) caused significant reduction in in vitro sperm capacitation and slight decline in tyrosine phosphorylated p72 and p52 proteins; however the protein was nontoxic to sperm. Mass spectrometric analysis of MIFS-I revealed significant identity with human semaphorin 3D. Both dot blot and western blot analysis demonstrated cross-reactivity of MIFS-I with polyclonal anti-human SEMA3D antibody. It was concluded that the MIFS-I of ovine CEP was putative ovine semaphorin 3D protein having potent sperm quiescent and decapacitating activities and it possibly acts through inhibition of protein tyrosine phosphorylation.


Assuntos
Epididimo , Semaforinas , Humanos , Masculino , Animais , Ovinos , Bovinos , Suínos , Motilidade dos Espermatozoides , Sêmen , Anticorpos , Tirosina , Mamíferos
15.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38168229

RESUMO

Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

16.
Vet Res Commun ; 48(2): 773-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37906355

RESUMO

Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.


Assuntos
Sirtuína 1 , Capacitação Espermática , Suínos , Masculino , Feminino , Animais , Capacitação Espermática/fisiologia , Sirtuína 1/metabolismo , Sêmen , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Mamíferos
17.
Methods Mol Biol ; 2743: 153-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147214

RESUMO

Tyrosine phosphorylation regulates signaling network activity downstream of receptor tyrosine kinase (RTK) activation. Receptor protein tyrosine phosphatases (RPTPs) serve to dephosphorylate RTKs and their proximal adaptor proteins, thus serving to modulate RTK activity. While the general function of RPTPs is well understood, the direct and indirect substrates for each RPTP are poorly characterized. Here we describe a method, quantitative phosphotyrosine phosphoproteomics, that enables the identification of specific phosphorylation sites whose phosphorylation levels are altered by the expression and activity of a given RPTP. In a proof-of-concept application, we use this method to highlight several direct or indirect substrate phosphorylation sites for PTPRJ, also known as DEP1, and show their quantitative phosphorylation in the context of wild-type PTPRJ compared to a mutant form of PTPRJ with increased activity, in EGF-stimulated cells. This method is generally applicable to define the signaling network effects of each RPTP in cells or tissues under different physiological conditions.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Proteínas Adaptadoras de Transdução de Sinal , Fosforilação , Processamento de Proteína Pós-Traducional
18.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119590, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730132

RESUMO

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes. This study aims to uncover novel substrates of PTP1B in podocytes and validate a leading candidate. To this end, using substrate-trapping and mass spectroscopy, we identified putative substrates of this phosphatase and investigated the actin cross-linking cytoskeletal protein alpha-actinin4. PTP1B and alpha-actinin4 co-localized in murine and human glomeruli and transiently transfected E11 podocyte cells. Additionally, podocyte PTP1B deficiency in vivo and culture was associated with elevated tyrosine phosphorylation of alpha-actinin4. Conversely, reconstitution of the knockdown cells with PTP1B attenuated alpha-actinin4 tyrosine phosphorylation. We demonstrated co-association between alpha-actinin4 and the PTP1B substrate-trapping mutant, which was enhanced upon insulin stimulation and disrupted by vanadate, consistent with an enzyme-substrate interaction. Moreover, we identified alpha-actinin4 tandem tyrosine residues 486/487 as mediators of its interaction with PTP1B. Furthermore, knockdown studies in E11 cells suggest that PTP1B and alpha-actinin4 are modulators of podocyte motility. These observations indicate that PTP1B and alpha-actinin4 are likely interacting partners in a signaling node that modulates podocyte function. Targeting PTP1B and plausibly this one of its substrates may represent a new therapeutic approach for podocyte injury that warrants additional investigation.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Células Epiteliais , Monoéster Fosfórico Hidrolases , Tirosina
19.
DNA Cell Biol ; 43(2): 74-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153368

RESUMO

The effector proteins of several pathogenic bacteria contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif or other similar motifs. The EPIYA motif is delivered into the host cells by type III and IV secretion systems, through which its tyrosine residue undergoes phosphorylation by host kinases. These motifs atypically interact with a wide range of Src homology 2 (SH2) domain-containing mammalian proteins through tyrosine phosphorylation, which leads to the perturbation of multiple signaling cascades, the spread of infection, and improved bacterial colonization. Interestingly, it has been reported that EPIYA (or EPIYA-like) motifs exist in mammalian proteomes and regulate mammalian cellular-signaling pathways, leading to homeostasis and disease pathophysiology. It is possible that pathogenic bacteria have exploited EPIYA (or EPIYA-like) motifs from mammalian proteins and that the mammalian EPIYA (or EPIYA-like) motifs have evolved to have highly specific interactions with SH2 domain-containing proteins. In this review, we focus on the regulation of mammalian cellular-signaling pathways by mammalian proteins containing these motifs.


Assuntos
Bactérias , Proteínas de Bactérias , Animais , Proteínas de Bactérias/química , Motivos de Aminoácidos , Fosforilação , Transdução de Sinais , Tirosina/metabolismo , Mamíferos/metabolismo
20.
Braz. j. biol ; 84: e254646, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360224

RESUMO

Chronic stress (CS) can contribute to dysfunction in several organs including liver and kidney. This study was performed to investigate the changes in serum biochemistry, histological structure, as well as in localization of tyrosine phosphorylated proteins (TyrPho) and Heat shock protein 70 (Hsp-70) in liver and kidney tissues of CS rats induced by two stressors (restrained and force swimming) for 60 consecutive days. Samples of blood, liver, and kidney were collected from adult male Sprague-Dawley rats in each group. Our results showed that serum biochemical parameters including corticosterone, blood sugar, urea nitrogen, creatinine, cholesterol, triglyceride, HDL-C, LDL-C, ALT, AST, alkaline phosphatase in CS group were significantly different from that in normal group in both liver and kidney tissues. Although histological structure was not changed. TyrPho expression was significantly increased in liver lysate but significantly decreased in kidney. Hsp-70 expression in liver increased whereas in kidney decreased. In conclusion, CS can induce changes in liver and kidney functions.


O estresse crônico (SC) pode contribuir para a disfunção em vários órgãos, incluindo fígado e rim. Este estudo foi realizado para investigar as alterações na bioquímica sérica, estrutura histológica, bem como na localização de proteínas tirosina fosforiladas (TyrPho) e proteína de choque térmico 70 (Hsp-70) em tecidos hepáticos e renais de ratos CS induzidas por dois estressores (restrito e natação forçada) por 60 dias consecutivos. Amostras de sangue, fígado e rim foram coletadas de ratos Sprague-Dawley machos adultos em cada grupo. Nossos resultados mostraram que os parâmetros bioquímicos séricos, incluindo corticosterona, glicemia, nitrogênio ureico, creatinina, colesterol, triglicerídeos, HDL-C, LDL-C, ALT, AST, fosfatase alcalina no grupo CS foram significativamente diferentes do grupo normal em ambos os fígados e tecidos renais. Embora a estrutura histológica não tenha sido alterada, a expressão de TyrPho aumentou significativamente no lisado hepático, mas diminuiu significativamente no rim. A expressão de Hsp-70 no fígado aumentou, enquanto que no rim diminuiu. Em conclusão, a CS pode induzir alterações nas funções hepáticas e renais.


Assuntos
Ratos , Estresse Fisiológico , Ratos Sprague-Dawley , Rim/anatomia & histologia , Fígado/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...