Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
1.
Phytochemistry ; 226: 114203, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969251

RESUMO

Glycosyltransferases catalyze the transfer of a glycoside group to a wide range of acceptor compounds to produce glycoconjugates with diverse biological and pharmacological activities. The present work reports the identification and biochemical characterization of Nicotiana tabacum UGT89A2 glycosyltransferase (NtUGT89A2). The enzyme is a monomer in solution that catalyzes the O-ß-glucosylation of di- and tri-hydroxylated and chlorinated derivatives of benzoic acid. NtUGT89A2 has a preference for 2,5-dihydroxybenzoic acid (2,5-DHBA) over 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,4-dihydroxybenzoic acid (2,4-DHBA). Other substrates that can be used by NtUGT89A2 include 3,4,5-trihydroxybenzoic acid and chlorinated derivatives such as 2-chloro-5-hydroxybenzoic acid (2-Cl-5-HBA). The substrates of NtUGT89A2 were identified by thermal stability experiments, where we observed a maximum increase of the thermal denaturation midpoint (Tm) of 10 °C in the presence of 2,5-DHBA and UDP-glucose. On the other hand, the highest specific activity was obtained with 2,5-DHBA (225 ± 1.7 nkat/mg). Further characterization revealed that the enzyme has a micromolar affinity for its substrates. Notably, the enzyme retains full activity after incubation at 70 °C for 1 h. These results provide a basis for future functional and structural studies of NtUGT89A2.

2.
J Genet Genomics ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969258

RESUMO

Human UDP-glycosyltransferases (UGTs) are responsible for the glucuronidation of a wide variety of endogenous substrates and multiple commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across seven major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into inter-individual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.

3.
Clin Immunol ; 265: 110300, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950722

RESUMO

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.

4.
Insect Mol Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956869

RESUMO

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm Bombyx mori UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.

5.
Protein Expr Purif ; 222: 106538, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950762

RESUMO

Nucleotide sugars (UDP-Sugars) are essential for the production of polysaccharides and glycoconjugates utilized in medicines, cosmetics, and food industries. The enzyme Galactose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.12) is responsible for the synthesis of UDP-galactose from α-d-galactose-1-phosphate (Gal-1P) and UTP. A novel bacterial GalU (TiGalU) encoded from a thermophilic bacterium, Thermodesulfatator indicus, was successfully purified using the Ni-NTA column after being expressed in Escherichia coli. The optimal pH for recombinant TiGalU was determined to be 5.5. The optimum temperature of the enzyme was 45 °C. The activity of TiGalU was not dependent on Mg2+ and was strongly inhibited by SDS. When coupled with galactose kinase (GALK1) and ß-1,4-galactosyltransferase 1 (B4GALT1), the enzyme enabled the one-pot synthesis of Gal-ß-1,4-GlcNAc-X by utilizing galactose and UTP as substrates. This study reported the in vitro biosynthesis of Gal-ß-1,4-GlcNAc-X for the first time, providing an environmentally friendly way to biosynthesis glycosides and other polysaccharides.

6.
Biochem Pharmacol ; 226: 116390, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914316

RESUMO

Infigratinib, an oral FGFR inhibitor for advanced cholangiocarcinoma, yielded two active metabolites, BHS697 and CQM157, with similar receptor affinity. Our study characterized P450s that are responsible for the metabolism of infigratinib to its two major active metabolites, BHS697 and CQM157. In vitro inhibition of P450s and UGTs by infigratinib, BHS697 or CQM157 was further investigated. The unbound apparent Km values for metabolism of infigratinib to BHS697 by HLM, human recombinant CYP2C8, CYP2C19, CYP2D6 and CYP3A4 enzymes are 4.47, 0.65, 2.50, 30.6 and 2.08 µM, while Vmax values are 90.0 pmol/min/mg protein, 0.13, 0.027, 0.81, and 0.56 pmol/min/pmol protein, respectively. The unbound apparent Km value for metabolism of infigratinib to CQM157 by HLM is 0.049 µM, while the Vmax value is 0.32 pmol/min/mg protein respectively. In HLM, infigratinib displayed moderate inhibition of CYP3A4 and CYP2C19 and weak or negligible inhibition of other P450 isoforms. BHS697 exhibited weak inhibition of CYP2B6, CYP2C9, CYP2C19 and CYP3A4, and no inhibition of CYP2C8 and CYP2D6. CQM157 moderately inhibited CYP2C9 and CYP3A4, and weakly or negligibly inhibited other P450 isoforms. Regarding UGTs, infigratinib moderately inhibited UGT1A4 and weakly inhibited UGT1A1, respectively. BHS697 weakly inhibited UGT1A1. In contrast, CQM157 moderately inhibited both UGT1A1 and UGT1A4. Our findings provide novel insights into the metabolism of and potential DDIs implicating infigratinib.

7.
Toxicol In Vitro ; 99: 105863, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823552

RESUMO

Selumetinib is an oral, effective, and selective tyrosine kinase inhibitor targeting mitogen-activated protein kinase 1 and 2 (MEK1/2), which is clinically active in multiple tumor types, such as neurofibromatosis type 1 (NF1), melanoma, gliomas and non-small cell lung cancer (NSCLC). The purpose of this article was to assess the effects of selumetinib on the activities of twelve human UDP-glucosyltransferases (UGTs) including UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, and its potential for inducing clinical drug-drug interactions (DDIs). The results demonstrated that selumetinib potently inhibited the activity of UGT2B7 through the mechanism of mixed inhibition with the inhibition constant value of 5.79 ± 0.65 µM. Furthermore, the plasma concentration of UGT2B7 substrate as the co-administered drug was predicted to be increased by at least 84 % when patients took selumetinib 75 mg twice daily, suggesting a high potential to induce clinical DDIs. Selumetinib exhibited weak inhibitory effects on other human UGTs and was unlikely to trigger off UGTs-mediated DDIs except for UGT2B7. Therefore, the combination of selumetinib with the substrate drug of UGT2B7 requires additional attention to avoid adverse events in clinical treatment.

8.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886878

RESUMO

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Assuntos
Interações Medicamentosas , Flavonoides , Glucuronosiltransferase , Microssomos Hepáticos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Humanos , Flavonoides/farmacologia , Microssomos Hepáticos/metabolismo , Estradiol/farmacologia , Himecromona/farmacologia , Propofol/farmacologia , Inibidores Enzimáticos/farmacologia
9.
J Agric Food Chem ; 72(25): 14255-14263, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867497

RESUMO

The addition of the O-linked N-acetylglucosamine (O-GlcNAc) is a significant modification for active molecules, such as proteins, carbohydrates, and natural products. However, the synthesis of terpenoid glycoside derivatives decorated with GlcNAc remains a challenging task due to the absence of glycosyltransferases, key enzymes for catalyzing the transfer of GlcNAc to terpenoids. In this study, we demonstrated that the enzyme mutant UGT74AC1T79Y/L48M/R28H/L109I/S15A/M76L/H47R efficiently transferred GlcNAc from uridine diphosphate (UDP)-GlcNAc to a variety of terpenoids. This powerful enzyme was employed to synthesize GlcNAc-decorated derivatives of terpenoids, including mogrol, steviol, andrographolide, protopanaxadiol, glycyrrhetinic acid, ursolic acid, and betulinic acid for the first time. To unravel the mechanism of UDP-GlcNAc recognition, we determined the X-ray crystal structure of the inactivated mutant UGT74AC1His18A/Asp111A in complex with UDP-GlcNAc at a resolution of 1.66 Å. Through molecular dynamic simulation and activity analysis, we revealed the molecular mechanism and catalytically important amino acids directly involved in the recognition of UDP-GlcNAc. Overall, this study not only provided a potent biocatalyst capable of glycodiversifying natural products but also elucidated the structural basis for UDP-GlcNAc recognition by glycosyltransferases.


Assuntos
Acetilglucosamina , Glicosídeos , Glicosiltransferases , Terpenos , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Terpenos/química , Terpenos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Biocatálise
10.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109962, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889874

RESUMO

Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.

11.
Pest Manag Sci ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837657

RESUMO

BACKGROUND: Entomopathogenic fungi, such as Beauveria bassiana, hold promise as biological control agents against insect pests. However, the efficacy of these fungi can be hindered by insect immune responses. One strategy to enhance fungal virulence is to manipulate host immune by targeting key regulatory molecules like 20-hydroxyecdysone (20E). RESULTS: In this study, we engineered B. bassiana strains to constitutively express the enzyme ecdysteroid UDP-glucosyltransferase (EGT), which inactivates 20E, a crucial insect molting hormone. The engineered strain Bb::EGT-1 exhibited robust expression of EGT, leading to a significant reduction in insect 20E levels upon infection. Moreover, infection with Bb::EGT-1 resulted in accelerated larval mortality. Immune responses analysis revealed repression of insect immune response genes and decreased phenoloxidase (PO) activity in larvae infected with Bb::EGT-1. Microbiome analysis indicated alterations in bacterial composition within infected insects, with increased abundance observed during infection with Bb::EGT-1. Additionally, the presence of bacteria hindered hyphal emergence from insect cadavers, suggesting a role for microbial competition in fungal dissemination. CONCLUSIONS: Constitutive expression of EGT in B. bassiana enhances fungal virulence by reducing insect 20E levels, suppressing immune responses, and altering the insect microbiome. These findings highlighted the potential of engineered fungi as effective biocontrol agents against insect pests and provide insights into the complex interactions between entomopathogenic fungi, their hosts, and associated microbes. © 2024 Society of Chemical Industry.

12.
J Biotechnol ; 391: 81-91, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38825191

RESUMO

Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, ß-hydroxy ß-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.


Assuntos
Vias Biossintéticas , Solanum , Solanum/genética , Solanum/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Alcaloides/metabolismo , Alcaloides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Solanáceas/metabolismo
13.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892266

RESUMO

Insects have developed sophisticated detoxification systems to protect them from plant secondary metabolites while feeding on plants to obtain necessary nutrients. As an important enzyme in the system, glycosyltransferase 1 (GT1) conjugates toxic compounds to mitigate their harm to insects. However, the evolutionary link between GT1s and insect plant feeding remains elusive. In this study, we explored the evolution of GT1s across different insect orders and feeding niches using publicly available insect genomes. GT1 is widely present in insect species; however, its gene number differs among insect orders. Notably, plant-sap-feeding species have the highest GT1 gene numbers, whereas blood-feeding species display the lowest. GT1s appear to be associated with insect adaptations to different plant substrates in different orders, while the shift to non-plant feeding is related to several losses of GT1s. Most large gene numbers are likely the consequence of tandem duplications showing variations in collinearity among insect orders. These results reveal the potential relationships between the evolution of GT1s and insect adaptation to plant feeding, facilitating our understanding of the molecular mechanisms underlying insect-plant interactions.


Assuntos
Adaptação Fisiológica , Duplicação Gênica , Glicosiltransferases , Insetos , Animais , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Adaptação Fisiológica/genética , Plantas/genética , Plantas/metabolismo , Evolução Molecular , Filogenia , Herbivoria , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
14.
New Phytol ; 243(3): 936-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831647

RESUMO

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Assuntos
Proteínas de Bactérias , Carbono , Glicosiltransferases , Synechocystis , Uridina Difosfato N-Acetilglicosamina , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Carbono/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
15.
J Agric Food Chem ; 72(27): 15284-15292, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918953

RESUMO

UDP-glucose is a key metabolite in carbohydrate metabolism and plays a vital role in glycosyl transfer reactions. Its significance spans across the food and agricultural industries. This study focuses on UDP-glucose synthesis via multienzyme catalysis using dextrin, incorporating UTP production and ATP regeneration modules to reduce costs. To address thermal stability limitations of the key UDP-glucose pyrophosphorylase (UGP), a deep learning-based protein sequence design approach and ancestral sequence reconstruction are employed to engineer a thermally stable UGP variant. The engineered UGP variant is significantly 500-fold more thermally stable at 60 °C and has a half-life of 49.8 h compared to the wild-type enzyme. MD simulations and umbrella sampling calculations provide insights into the mechanism behind the enhanced thermal stability. Experimental validation demonstrates that the engineered UGP variant can produce 52.6 mM UDP-glucose within 6 h in an in vitro cascade reaction. This study offers practical insights for efficient UDP-glucose synthesis methods.


Assuntos
Biocatálise , Engenharia de Proteínas , UTP-Glucose-1-Fosfato Uridililtransferase , Uridina Difosfato Glucose , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/química , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/química , Estabilidade Enzimática , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo
16.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 135-141, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935514

RESUMO

Mycobacterium tuberculosis can reside and persist in deep tissues; latent tuberculosis can evade immune detection and has a unique mechanism to convert it into active disease through reactivation. M. tuberculosis Rv1421 (MtRv1421) is a hypothetical protein that has been proposed to be involved in nucleotide binding-related metabolism in cell-growth and cell-division processes. However, due to a lack of structural information, the detailed function of MtRv1421 remains unclear. In this study, a truncated N-terminal domain (NTD) of MtRv1421, which contains a Walker A/B-like motif, was purified and crystallized using PEG 400 as a precipitant. The crystal of MtRv1421-NTD diffracted to a resolution of 1.7 Šand was considered to belong to either the C-centered monoclinic space group C2 or the I-centered orthorhombic space group I222, with unit-cell parameters a = 124.01, b = 58.55, c = 84.87 Å, ß = 133.12° or a = 58.53, b = 84.86, c = 90.52 Å, respectively. The asymmetric units of the C2 or I222 crystals contained two or one monomers, respectively. In terms of the binding ability of MtRv1421-NTD to various ligands, uridine diphosphate (UDP) and UDP-N-acetylglucosamine significantly increased the melting temperature of MtRv1421-NTD, which indicates structural stabilization through the binding of these ligands. Altogether, the results reveal that a UDP moiety may be required for the interaction of MtRv1421-NTD as a nucleotide-binding protein with its ligand.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Ligantes , Ligação Proteica , Domínios Proteicos , Cristalização , Difração de Raios X , Escherichia coli/metabolismo , Escherichia coli/genética , Clonagem Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sequência de Aminoácidos
17.
Curr Drug Metab ; 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803186

RESUMO

BACKGROUND: Avapritinib is the only drug for adult patients with PDGFRA exon 18 mutated unresectable or metastatic gastrointestinal stromal tumor (GIST). Although avapritinib has been approved by the FDA for four years, little is known about the risk of drug-drug interactions (DDIs) via UDP-glucuronyltransferases (UGTs) inhibition. OBJECTIVE: The aim of the present study was to systematically evaluate the inhibitory effects of avapritinib against UGTs and to quantitatively estimate its potential DDIs risk in vivo. METHODS: Recombinant human UGTs were employed to catalyze the glucuronidation of substrates in a range of concentrations of avapritinib. The kinetics analysis was performed to evaluate the inhibition types of avapritinib against UGTs. The quantitative prediction of DDIs was done using in vitro-in vivo extrapolation (IVIVE). RESULTS: Avapritinib had a potent competitive inhibitory effect on UGT1A1. Quantitative prediction results showed that avapritinib administered at clinical doses might result in a 14.85% in-crease in area under the curve (AUC) of drugs primarily cleared by UGT1A1. Moreover, the Rgut value was calculated to be 18.44. CONCLUSION: Avapritinib has the potential to cause intestinal DDIs via the inhibition of UGT1A1. Additional attention should be paid when avapritinib is coadministered with UGT1A1 substrates.

18.
Int J Biol Macromol ; 271(Pt 2): 132455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795878

RESUMO

The rice pest Nilaparvata lugens (the brown planthopper, BPH) has developed different levels of resistance to at least 11 chemical pesticides. RNAi technology has contributed to the development of environmentally friendly RNA biopesticides designed to reduce chemical use. Consequently, more precise targets need to be identified and characterized, and efficient dsRNA delivery methods are necessary for effective field pest control. In this study, a low off-target risk dsNlUAP fragment (166 bp) was designed in silico to minimize the potential adverse effects on non-target organisms. Knockdown of NlUAP via microinjection significantly decreased the content of UDP-N-acetylglucosamine and chitin, causing chitinous structural disorder and abnormal phenotypes in wing and body wall, reduced fertility, and resulted in pest mortality up to 100 %. Furthermore, dsNlUAP was loaded with ROPE@C, a chitosan-modified nanomaterial for spray application, which significantly downregulated the expression of NlUAP, led to 48.9 % pest mortality, and was confirmed to have no adverse effects on Cyrtorhinus lividipennis, an important natural enemy of BPH. These findings will contribute to the development of safer biopesticides for the control of N. lugens.


Assuntos
Hemípteros , RNA de Cadeia Dupla , Animais , Hemípteros/genética , Hemípteros/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Quitosana/química , Interferência de RNA , Quitina/química , Oryza/genética , Oryza/parasitologia , Nucleotidiltransferases
19.
Plant Commun ; : 100938, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689494

RESUMO

Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.

20.
J Agric Food Chem ; 72(23): 13328-13340, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805380

RESUMO

Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 µM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.


Assuntos
Camellia sinensis , Flavonóis , Glicosídeos , Glicosiltransferases , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Flavonóis/metabolismo , Flavonóis/química , Flavonóis/biossíntese , Glicosídeos/metabolismo , Glicosídeos/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/enzimologia , Cinética , Rutina/metabolismo , Rutina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...