Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.544
Filtrar
1.
Heliyon ; 10(12): e32274, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975205

RESUMO

In this study, a UPLC-MS/MS method was developed for the rapid detection of 71 neuropsychotropic drugs in human serum for drug concentration monitoring and toxicity screening. The analytes were separated from the biological matrix by protein precipitation using a methanol-acetonitrile solvent mixture. The chromatographic separation was performed on a Kromasil ClassicShell C18 column (2.1*50 mm, 2.5 µ m) with gradient elution using acetonitrile-0.2 % acetic acid and 10 mM ammonium acetate as the mobile phases (flow rate 0.4 mL/min, column temperature 40 °C, injection volume 5 µL). An electrospray ion source in both positive and negative ion modes with multiple ion monitoring was used. The total run time was 6 min. All compounds were quantified using the isotope internal standard method. Totally, 71 drugs were detected within their linear ranges with correlation coefficients greater than 0.990. The intra- and inter-batch precision relative standard deviations (RSDs) for the low, medium, and high concentration points were less than 15 %, with an accuracy of 90%-110 %. All compounds except Moclobemide N-oxindole are stabilised within 7 days. The relative matrix effect results for each analyte were within ±20 % of the requirements. The method is validated according to Clinical and Laboratory Standards Institute guidelines, easy to use, and has a low cost.

2.
Mycotoxin Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990417

RESUMO

UPLC-MS/MS analytical conditions for the analysis of aflatoxins in spices were optimized and validated in this study. Liquid-liquid partition-based protocols for the cleaning up of extracts using common organic solvents such as acetonitrile, hexane, and ethyl acetate were developed and validated. The developed liquid-liquid partition methods were compared with immuno-affinity column and QuEChERS clean-up methods for the UPLC-MS/MS analysis of aflatoxins in 8 spices. The reduction of lipophilic components using the partition with hexane is particularly useful in spices like red pepper that have higher levels of fatty acids, carotenoids, sterols, triterpenoids, etc. The subsequent partitioning with ethyl acetate considerably reduced the matrix interference from the polar components and increased the sensitivity. The cleaning up of spice extracts using liquid-liquid partition techniques resulted in limits of quantification (LOQ) of 2-5 µgL-1 in UPLC-MS/MS analysis. Trueness, repeatability, and reproducibility of the methods were in acceptable ranges. The accuracy of the developed methods was further verified by analyzing aflatoxins in naturally incurred samples of spices and comparing the results with those obtained from the immuno-affinity column cleanup-HPLC-FD method.

3.
J Sep Sci ; 47(13): e2400308, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982562

RESUMO

Jiawei Huoxiang Zhengqi Pill (JHZP) is a commonly used Chinese patent medicine for the clinical treatment of headache, dizziness, chest tightness as well as abdominal distension, and pain caused by wind-cold flu. In this study, a comprehensive strategy combining ultra-high performance liquid chromatography with diode array detector (UHPLC-DAD) fingerprinting and multi-component quantitative analysis was established and validated for quality evaluation of JHZP. A total of 49 characteristic common peaks were selected in a chromatographic fingerprinting study to assess the similarity of 15 batches of JHZP. Furthermore, 109 compounds were identified or preliminarily identified from JHZP by coupling with an advanced hybrid linear ion trap-Orbitrap mass spectrometer. For quantification, the optimized ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was employed for the simultaneous determination of 13 target compounds within 12 min. The sensitivity, precision, reproducibility, and accuracy of the method were satisfactory. This validated UPLC-MS/MS method was successfully applied to analyzing 15 batches of JHZP. The proposed comprehensive strategy combining UHPLC-DAD fingerprinting and multi-component UPLC-MS/MS analysis proved to be highly efficient, accurate, and reliable for the quality evaluation of JHZP, which can be considered as a reference for the overall quality evaluation of other Chinese herbal formulations.


Assuntos
Medicamentos de Ervas Chinesas , Controle de Qualidade , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química
4.
Front Pharmacol ; 15: 1408304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989153

RESUMO

Introduction: Pycnogenol (PYC), a standardized extract from French maritime pine, has traditionally been used to treat inflammation. However, its primary active components and their mechanisms of action have not yet been determined. Methods: This study employed UPLC-MS/MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) and network pharmacology to identify the potential active components of PYC and elucidate their anti-inflammatory mechanisms by cell experiments. Results: 768 PYC compounds were identified and 19 anti-inflammatory compounds were screened with 85 target proteins directly involved in the inflammation. PPI (protein-protein interaction) analysis identified IL6, TNF, MMP9, IL1B, AKT1, IFNG, CXCL8, NFKB1, CCL2, IL10, and PTGS2 as core targets. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis suggested that the compound in PYC might exert anti-inflammatory effects through the IL17 and TNF signal pathways. Cell experiments determined that PYC treatment can reduce the expression of IL6 and IL1ß to relieve inflammation in LPS (lipopolysaccharide)-induced BV2 cells. Conclusion: PYC could affect inflammation via multi-components, -targets, and -mechanisms.

5.
J Water Health ; 22(5): 887-895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822467

RESUMO

Etomidate (ET), a hypnotic agent used for the induction of anesthesia, is rapidly metabolized to etomidate acid (ETA) in the liver. Recently, ET has become one of the most serious alternative drugs of abuse in China. Therefore, an urgent need exists to develop a fast and convenient analysis method for monitoring ET. The current work presents a simple, fast, and sensitive direct injection method for the determination of ET and ETA in wastewater. After the optimization of the ultra-performance liquid chromatography-tandem mass spectrometry and sample filtration conditions, the method exhibited satisfactory limits of detection (1 ng/L) and good filtration loss. The validated method was successfully applied to determine the concentrations of ET and ETA in wastewater samples (n = 245) from several wastewater treatment plants in China. The concentrations of the targets in positive samples ranged from less than the lower limits of quantitation to 47.71 ng/L. The method can meet ET monitoring and high-throughput analysis requirements.


Assuntos
Etomidato , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água , Etomidato/análise , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , China , Hipnóticos e Sedativos/análise , Limite de Detecção
6.
Artigo em Inglês | MEDLINE | ID: mdl-38909567

RESUMO

OPC-61815 is an intravenous formulation vasopressin antagonist designed to treat heart failure patients, especially who have difficulty in oral intake. Tolvaptan together with DM-4103 and DM-4107 are considered as the major metabolites of OPC-61815 biotransformed in the liver via cytochrome P450 (CYP) 3A. An efficient and robust ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of OPC-61815 and its three metabolites in human plasma was developed and fully validated. To our best knowledge, it was the first published method that simultaneously quantified all of these four analytes in only one run. Simple and rapid sample preparation procedure and very short UPLC-MS/MS run time (3.5 min) offered OPC-61815 and its metabolites relatively high throughput detection, which was greatly beneficial to further clinical bio-sample analysis. The method showed good linearity and sufficient sensitivity in the range of 2.00-1000 ng/mL with a low limit of quantitation (2.00 ng/mL) for each analyte. For samples with concentrations above 1000 ng/mL, 100-fold dilution with blank plasma before sample preparation was accepted. High precision and accuracy, high selectivity and satisfactory recovery of this method were demonstrated. For all of the four analytes, no significant matrix effect or carry-over was observed. The stability of analytes and internal standards under different conditions were evaluated to ensure they were stable during the whole period of storage, preparation and detection. Also, re-injection reproducibility was investigated. In addition, the conversion test showed that almost no OPC-61815 converted into DM-4103 and DM-4107 during sample processing, while attention should be paid to the concentration difference between OPC-61815 and tolvaptan in bioanalysis. The developed UPLC-MS/MS method was successfully applied to an open, single and multiple dose administration phase I trial for monitoring the pharmacokinetics of OPC-61815. This work provided a promising way for further pharmacokinetic study of OPC-61815.


Assuntos
Espectrometria de Massas em Tandem , Tolvaptan , Espectrometria de Massas em Tandem/métodos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Tolvaptan/sangue , Tolvaptan/química , Modelos Lineares , Limite de Detecção , Benzazepinas/sangue , Benzazepinas/farmacocinética , Benzazepinas/química , Espectrometria de Massa com Cromatografia Líquida
7.
Artigo em Inglês | MEDLINE | ID: mdl-38924946

RESUMO

Tyrosine kinase inhibitors (TKIs) are commonly used to treat various cancers. Literature suggests that the blood concentration of TKIs strongly correlates with their efficacy and adverse effects. Therefore, establishing a Therapeutic Drug Monitoring (TDM) methodology for TKI drugs is crucial to improving their clinical efficacy and minimizing the treatment-related adverse effects. However, quantifying their concentrations in the plasma using existing methods to avoid potential toxicity is challenging. Herein, seven TKIs, namely sorafenib tosylate, axitinib, erlotinib, cediranib, brivanib, linifanib, and golvatinib, were successfully analyzed in human plasma by following a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Briefly, biological samples were extracted using 1 mL of methanol, followed by the sequential addition of 250 mg of anhydrous magnesium sulfate and 25 mg of N-propylethylenediamine (PSA) for salinization and purification by adsorption, respectively. In this study, dovitinib was used as the internal standard. The seven TKIs were detected by the gradient elution method for 4 min in the positive ion electrospray mode. The mobile phase comprised methanol (phase A) and 0.1 % aqueous formic acid solution (phase B) on the Agilent Zorbax RRHD Stablebond Aq, (2.1 × 50 mm; 1.8 µm). Brivanib, linifanib, axitinib, sorafenib tosylate, and golvatinib exhibited good linearity in the range of 5-500 ng/mL, and erlotinib and cediranib exhibited good linearity in the range of 10-1000 ng/mL, with linear correlation coefficients (R2) ≥ 0.99. The limits of detection and quantification were 0.60-0.18 ng/mL and 5-10 ng/mL, respectively. The intraday and interday accuracy values ranged from -6.12 % to 7.31 %, with a precision (RSD) of ≤ 10.57 %. The method was rapid, accurate, specific, simple, reproducible, and suitable for the quantitative determination of the seven TKIs in human plasma.


Assuntos
Carcinoma Hepatocelular , Limite de Detecção , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/tratamento farmacológico , Reprodutibilidade dos Testes , Modelos Lineares , Monitoramento de Medicamentos/métodos , Espectrometria de Massa com Cromatografia Líquida
8.
Life (Basel) ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929746

RESUMO

The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".

9.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38931394

RESUMO

Yeokwisan (YWS) is an herbal medicine prescription consisting of six oriental herbal medicines, developed to treat reflux esophagitis. We focused on developing an analytical method capable of simultaneously quantifying 13 compounds in YWS samples using high-performance liquid chromatography-photodiode array detection (HPLC-PDA) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and exploring their antioxidant effects. All compounds examined in both analytical systems were chromatographically separated on a SunFireTM C18 (4.6 × 250 mm, 5 µm) column and an Acquity UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) column using gradient elution of a water-acetonitrile mobile phase. Antioxidant effects were evaluated based on radical scavenging activity (DPPH and ABTS tests) and ferrous ion chelating activity. In two analytical methods, the coefficient of determination of the regression equation was ≥0.9965, the recovery range was 81.11-108.21% (relative standard deviation (RSD) ≤ 9.33%), and the precision was RSD ≤ 11.10%. Application of the optimized analysis conditions gave quantitative analysis results for YWS samples of 0.02-100.36 mg/g. Evaluation of the antioxidant effects revealed that baicalein and baicalin exhibit significant antioxidant activity, suggesting that they play an important role in the antioxidant effects of YWS.

10.
Front Pharmacol ; 15: 1389754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919252

RESUMO

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was utilized to develop a technique for the simultaneous quantification of icariin and its primary metabolites in mouse urine. The levels of icariin, icariside Ⅰ, icariside Ⅱ, baohuoside Ⅱ, wushanicaritin, icaritin, and desmethylicaritin in mouse urine were analyzed subsequent to the oral administration of an icariin suspension. This study aimed to preliminarily investigate the excretion profile of icariin in mice. Using an aqueous solution containing 0.1% formic acid (A) and an acetonitrile solution containing 0.1% formic acid (B) as the mobile phases, icariin and its major metabolites demonstrated satisfactory linearity over the concentration range of 0.25-800 ng·mL-1. The precision and accuracy of intra-day and inter-day measurements were all found to be within 15%. Seventy-two hours after the intragastric administration of icariin suspension to a mouse, the cumulative urinary excretion of icariin, icariside Ⅰ, icariside Ⅱ, baohuoside Ⅱ, wushanicaritin, icaritin, and desmethylicaritin was quantified as 13.48, 18.70, 2,627.51, 2.04, 10.04, 3,420.44, and 735.13 ng, respectively. The UPLC-MS/MS method developed in this research is characterized by its simplicity, sensitivity, and speed, making it well-suited for the concurrent quantification of icariin and its associated metabolites in urine. Additionally, it is appropriate for analyzing urine samples that may contain multiple drugs in future investigations.

11.
J Fungi (Basel) ; 10(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921424

RESUMO

Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.

12.
New Phytol ; 243(3): 1262-1275, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849316

RESUMO

The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.


Assuntos
Aminoácidos Cíclicos , Arabidopsis , Etilenos , Espectrometria de Massas em Tandem , Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Etilenos/biossíntese , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Aminoácidos Cíclicos/metabolismo , Vias Biossintéticas , Estresse Fisiológico , Reprodutibilidade dos Testes , Mutação/genética , Espectrometria de Massa com Cromatografia Líquida
13.
Foods ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928783

RESUMO

Barley is rich in phenolic compounds, providing health benefits and making it a valuable addition to a balanced diet. However, most studies focus on these compounds at barley's final maturity, neglecting their synthesis during grain development and its impact on barley quality for food applications. This study investigates phenolic profiles during grain development in four hull-less barley genotypes with different grain colors, specifically bred for food applications. The objectives were to determine the phenolic profile and identify the optimal maturity stage for maximum phenolic content and antioxidant capacity. Using UPLC-MS/MS and in vitro antioxidant capacity assays, results show that total phenolic compounds decrease as grain matures due to increased synthesis of reserve components. Flavan-3-ols, phenolic acids, and flavone glycosides peaked at immature stages, while anthocyanins peaked at physiological maturity. The harvest stage had the lowest phenolic content, with a gradient from black to yellow, purple, and blue genotypes. Antioxidant capacity fluctuated during maturation, correlating positively with phenolic compounds, specially bound phenolic acids and anthocyanins. These findings suggest that early harvesting of immature grain can help retain bioactive compounds, promoting the use of immature barley grains in foods. To support this market, incentives should offset costs associated with decreased grain weight.

14.
Biomed Chromatogr ; : e5921, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886007

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.

15.
J Pharm Biomed Anal ; 248: 116289, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38901158

RESUMO

Traditional Chinese medicines (TCMs) are popular in clinic because of their safety and efficacy. They contain abundant natural active compounds, which are important sources of new drug discovery. However, how to efficiently identify active compounds from complex ingredients remains a challenge. In this study, a method combining UHPLC-MS/MS characterization and in silico screening was developed to discover compounds with dopamine D2 receptor (D2R) activity in Stephania epigaea (S. epigaea). By combining the compounds identified in S. epigaea by UHPLC-MS/MS with reported compounds, a virtual library of 80 compounds was constructed for in silico screening. Potentially active compounds were chosen based on screening scores and subsequently tested for in vitro activity on a transfected cell line CHO-K1-D2 model using label-free cellular phenotypic assay. Three D2R agonists and five D2R antagonists were identified. (-)-Asimilobine, N-nornuciferine and (-)-roemerine were reported for the first time as D2R agonists, with EC50 values of 0.35 ± 0.04 µM, 1.37 ± 0.10 µM and 0.82 ± 0.22 µM, respectively. Their target specificity was validated by desensitization and antagonism assay. (-)-Isocorypalmine, (-)-tetrahydropalmatine, (-)-discretine, (+)-corydaline and (-)-roemeroline showed strong antagonistic activity on D2R with IC50 values of 92 ± 9.9 nM, 1.73 ± 0.13 µM, 0.34 ± 0.02 µM, 2.09 ± 0.22 µM and 0.85 ± 0.08 µM, respectively. Their kinetic binding profiles were characterized using co-stimulation assay and they were both D2R competitive antagonists. We docked these ligands with human D2R crystal structure and analyzed the structure-activity relationship of aporphine-type D2R agonists and protoberberine-type D2R antagonists. These results would help to elucidate the mechanism of action of S. epigaea for its analgesic and sedative efficacy and benefit for D2R drug design. This study demonstrated the potential of integrating UHPLC-MS/MS with in silico and in vitro screening for accelerating the discovery of active compounds from TCMs.

16.
J Chromatogr A ; 1730: 465054, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901297

RESUMO

An accurate and sensitive method for the determination of a total of 23 pesticides and their metabolites in human urine has been optimised. The methodology is based on a previously published method based on solid-phase extraction with methanol and acetone followed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in the selected reaction mode (SRM) with both positive and negative electrospray ionization (ESI+/-). The detection settings of the previous method, which allowed to determine the metabolites from 6 organophosphate and 2 pyrethroid pesticides, were optimised in order to include further pesticide groups, such as 11 neonicotinoids, 3 carbamates/thiocarbamates and 2 triazoles. The 5-windows method enduring 22 min was optimized with acceptable results in relation to accuracy (recoveries >75 %), precision (coefficients of variation <26 %) and linearity (R2> 0.9915). The limits of detection ranged between 0.012 ng/mL and 0.058 ng/mL. Samples from the German External Quality Assessment Scheme (G-EQUAS) encompassing 2 pyrethroids, 2 organophosphate and one neonicotinoid (6-chloronicotinic acid, a common metabolite of imidacloprid and acetamiprid) were analysed, and the latter, included in this newest optimization, provided good reference results. The method is optimal as a human biomonitoring tool for health risk assessment in large population surveys.

17.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893341

RESUMO

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Assuntos
Células 3T3-L1 , Fármacos Antiobesidade , Cinamatos , Depsídeos , Perilla frutescens , Extratos Vegetais , Ácido Rosmarínico , Camundongos , Perilla frutescens/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Depsídeos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/isolamento & purificação , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Termogênese/efeitos dos fármacos
18.
Nat Prod Res ; : 1-6, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847179

RESUMO

Ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-MS/MS) were used to target quantitative determination anthocyanins and flavonoids in the fresh leaves (purple and green) of Eleutherococcus senticosus. The results showed that the content of total anthocyanins was 99.68 µg/g (Fresh Weight, FW) in purple leaves and 29.12 µg/g in green leaves. Cyanidin-3-O-galactoside and delphinidin were the main anthocyanins compound in purple and green leaves, and the content of the both declined sharply in green leaves. The content of cyanidin-3-O-galactoside reached 616.23 ng/100 mg in purple leaves and was only fifth in green leaves. The total flavonoids content was 4.90 mg/g in purple leaves and 2.23 mg/g in green leaves. Quercetin-3-ß-D-glucoside (236.96 ng/mg) and kaempferol-3-O-glucoside (145.27 ng/mg) were the main flavonoids compound in purple leaves. Besides the two main flavonoids, large quantities of rutin (269.11 ng/mg) was detected in green leaves of E. senticosus.

19.
Anal Chim Acta ; 1313: 342759, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38862207

RESUMO

BACKGROUND: Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS: The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 µL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY: This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.


Assuntos
Vesículas Extracelulares , Leite Humano , Oxilipinas , Espectrometria de Massas em Tandem , Humanos , Leite Humano/química , Oxilipinas/análise , Oxilipinas/química , Vesículas Extracelulares/química , Cromatografia Líquida de Alta Pressão , Feminino
20.
Food Chem X ; 22: 101487, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855096

RESUMO

In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...