RESUMO
Zinc oxide nanoparticles (ZnO NP) are characterized by novel properties which have been attracting the attention of different lines of research due to their wide applicability. Obtaining this nanomaterial is strongly linked to biogenic synthesis methods, which have also been developed in this research, using Coriandrum sativum extract as a reducing agent. ZnO NPs have been properly characterized by techniques to evaluate their morphology by transmission electron microscopy (TEM) and elemental analysis by EDX. The evaluation of the antimicrobial and antifungal effects is linked to the use of a system provided by "locker sanitizer" equipment, which has been designed and built as part of this research, and is intended to treat textile garments by nebulizing the ZnO NP colloid (99.08 µg/mL) + UV-B, water + UV-B, and UV-B only, and also to evaluate the influence of the treatment time for 1, 2 and 3 min. In this sense, it is known that the nanomaterial used shows a better response to UV light because more hydroxyl radicals are produced, leading to a higher reaction rate, which results in greater efficiency in inhibitory processes. The results show that the use of the locker sanitizer is more efficient when using ZnO NP + UV-B light since it achieved 100 % growth inhibition against E. coli, C. albicans, and A. brasiliensis, and >99 % against S. aureus, after 3 min of treatment.
RESUMO
INTRODUCTION: Solar disinfection (SODIS) is an effective method for microbiologic inactivation of contaminated water using ultraviolet rays at low elevations. The aim of this study was to determine the effectiveness of SODIS at higher elevations. METHODS: The ability of SODIS to inactivate Escherichia coli bacteria was evaluated at an altitude of ≥1600 m using Nalgene bottles, disposable plastic water bottles, and Ziploc plastic bags. Bacterial viability was determined through measurement of colony forming units (CFUs). Decreases in CFUs were determined at each time point relative to those at the baseline, and a multivariable regression analysis was used to assess significant changes in CFUs. RESULTS: Bacterial CFUs in exposed containers decreased by >5 log after 6 h of exposure to sunlight. In contrast, the CFUs remained nearly unchanged in unexposed containers, showing a mean decrease of 0.3 log. By 2 h, bacterial inactivation at high altitudes was 1.7-fold greater than that at lower altitudes (P<0.05). By 6 h, nearly all bacteria were inactivated at high or low altitudes. At 6 h, no statistical difference was observed in the efficiency of inactivation between elevations. Compared with Nalgene bottles, plastic bottles had a 1.4-fold greater decrease in CFUs (P<0.05). No statistical difference in bacterial inactivation was found between plastic bottles and plastic bags. CONCLUSIONS: At high altitudes, SODIS is an effective method for inactivating E coli. Further research investigating other microorganisms is warranted to determine whether SODIS is suitable for disinfecting contaminated water at high altitudes.
Assuntos
Luz Solar , Purificação da Água , Escherichia coli , Altitude , Desinfecção/métodos , Purificação da Água/métodos , Plásticos , Microbiologia da ÁguaRESUMO
Low-cost household technologies for water treatment are crucial to improving drinking water quality and preventing health, social and economic impacts, mostly in middle- and low-income regions. This work assessed the removal efficiency of physical-chemical and bacteriological parameters from river water by a multi-barrier household water treatment system for 113 consecutive days. This system combines a pre-treatment step through a non-woven synthetic blanket, filtration by an intermittent household slow sand filter (HSSF) and a Mesita Azul® ultraviolet disinfection device. In general, the water quality was improved by the evaluated system. Turbidity was removed by an average of 73% (ranging from 33 to 94%), total coliforms (TC) of 3.88 log10 (ranging from 2.22 to 5.16 log10) and E. coli of 2.49 log10 (ranging from 1.81 to 3.30 log10). Filtration improvement was mostly correlated to HSSF biofilm development and influent water quality. Characterisation of HSSF schmutzdecke demonstrated a predominance of organic content, and a higher presence of carbohydrates than proteins on the sand and the blanket. Ultraviolet disinfection with Mesita Azul® inactivated most of the remaining bacteria after filtration and no regrowth was observed after 15 days of disinfection. In conclusion, the multi-barrier household water treatment system was efficient in treating river water, reducing risks of microbial contamination to achieve safe drinking water.
Assuntos
Água Potável , Purificação da Água , Desinfecção , Escherichia coli , Filtração , Dióxido de SilícioRESUMO
As part of efforts to combat the Covid-19 pandemic and decrease the high transmissibility of the new coronavirus, SARS-CoV-2, effective inactivation strategies, such as UV-C decontamination technologies, can be reliably disseminated and well-studied. The present study investigated the susceptibility of a high viral load of SARS-CoV-2 in filtering facepiece respirators (FFR) N95, surgical mask, cotton fabric mask and N95 straps under three different doses of UV-C, applying both real-time PCR (qPCR) and plaque formation assays to quantify viral load reduction and virus infectivity, respectively. The results show that more than 95% of the amount of SARS-CoV-2 RNA could be reduced after 10 min of UV-C exposure (0.93 J cm-2 per side) in FFR N95 and surgical masks and, after 5 min of UV-C treatment (0.46 J cm-2 per side) in fabric masks. Furthermore, the analysis of viable coronaviruses after these different UV-C treatments demonstrated that the lowest applied dose is sufficient to decontaminate all masks ([Formula: see text] 3-log10 reduction of the infective viral load, > 99.9% reduction). However, for the elastic strap of N95 respirators, a UV-C dose three times greater than that used in masks (1.4 J cm-2 per side) is required. The findings suggest that the complete decontamination of masks can be performed effectively and safely in well-planned protocols for pandemic crises or as strategies to reduce the high consumption and safe disposal of these materials in the environment.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Máscaras , Respiradores N95 , COVID-19/prevenção & controle , RNA Viral , Descontaminação/métodosRESUMO
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 µM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 µM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min). Graphical abstract TCC degradation and ecotoxicological assessment.