Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Heliyon ; 10(11): e32346, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961934

RESUMO

Ultrasonic-assisted oxidative desulfurization (UAOD) is utilized to lessen environmental problems due to sulfur emissions. The process uses immiscible polar solvents and ultrasonic waves to enhance desulfurization efficiency. Prior research focused on comparing the effectiveness of UAOD for gasoline using response surface methodology. This study evaluates the desulfurization efficiency and operating costs, including ultrasonic power, irradiation time, and oxidant amount to determine optimal conditions. The study used a multi-objective fuzzy optimization (MOFO) approach to evaluate the economic viability of UAOD for gasoline. It identified upper and lower boundaries and then optimized the desulfurization efficiency and operating costs while considering uncertainty errors. The fuzzy model employed max-min aggregation to optimize the degree of satisfaction on a scale from 0 (unsatisfied) to 1 (satisfied). Optimal conditions for gasoline UAOD were found at 445.43 W ultrasonic power, 4.74 min irradiation time, and 6.73 mL oxidant, resulting in a 66.79 % satisfaction level. This yielded a 78.64 % desulfurization efficiency (YA) at an operating cost of 13.49 USD/L. Compared to existing literature, gasoline desulfurization was less efficient and less costly. The solutions provided by MOFO demonstrate not only economic viability through decreased overall operating costs and simplified process conditions, but also offer valuable insights for optimizing prospective future industrial-scale UAOD processes.

2.
Heliyon ; 10(12): e33066, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988524

RESUMO

An efficient and environmentally friendly extraction method utilizing an ultrasonic-assisted natural deep eutectic solvent (UAE-NADES) was developed for the extraction of anthocyanins from Vitis davidii Foex. A screening process was conducted to evaluate seven different NADESs, resulting in the selection of a high-efficiency NADES (choline chloride-glycerol (ChGly)). To analyze the influence of significant factors and their interactive effects on the total anthocyanin content (TAC), response surface methodology (RSM) was employed. Furthermore, the conditions of extraction were optimized to attain the most productive yield of total anthocyanin content. The theoretical optimal conditions were determined to be a liquid‒solid ratio of 34.46 mL/g, an extraction temperature of 322.79 K and an ultrasonic power of 431.67 W, under which the verification TAC value (3.682 ± 0.051 mg/g) was highly consistent with the theoretical value (3.690 mg/g). Seventeen anthocyanins were identified by UPLC‒MS/MS. The contents of the main anthocyanins peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, malvidin-3-O-5-O-(6-O-coumaroyl)-diglucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside in the ChGly extracts were significantly higher than those in the acid‒alcohol extract. Stability assays showed that the stability of anthocyanins in ChGly is higher than that in acidified alcohol at higher temperature, pH and stronger illumination. In vitro antioxidant results showed that the antioxidant capacities of the compounds extracted through the use of UAE-NADES were higher than those extracted using acidified alcohol. Additionally, the thermal behavior of anthocyanin extracts was further characterized through DSC analysis, highlighting the influence of ChGly or acidic ethanol. The results indicate that UAE-NADES exhibits a significant effect on the extraction of anthocyanins from plant byproducts, suggesting that its potential for use in the food sector is considerable.

3.
Ultrason Sonochem ; 108: 106974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954863

RESUMO

Battery industry, one of the most crucial components of the modern world, relies heavily on lithium production, and brines from the spent battery materials is one of the most important sources to exploit lithium. A new ultrasonic assisted membrane processing is proposed for lithium separation simulated brine. The effects of membrane composition, feed concentration, and ultrasonic conditions on the lithium extraction efficiency have been explored. The composite membrane including polysulfone (PSF) as the support and 1-alkyl-3-methylimidazolium hexafluorophosphate and tributyl phosphate as ionic liquid membrane. A porous PVC membrane has been used for prevention of the ILM loss. The optimal ultrasonic frequency is approximately 250 kHz, which matches the bulk modulus of the membrane and enhances the separation efficiency. Higher frequencies and optimized amplitude and pulse cycle settings further improve the lithium flux and selectivity. Moreover, higher flux and selectivity are achieved when separating lithium from alkali metal chlorides at higher feed concentrations, ranging from 250 ppm to 1000 ppm. The mechanism of enhanced lithium extraction by ultrasonics is attributed to the combination of microbubble formation, cavitation, and heat generation, which disrupt the concentration gradient and facilitate lithium transport across the membrane.

4.
Chem Biodivers ; : e202400955, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046726

RESUMO

To optimize the ultrasonic-assisted biphasic aqueous extraction conditions for polyphenolic compounds from Vaccinium dunalianum Wight leaves and investigate their antioxidant and tyrosinase inhibition activities, single-factor experiments were conducted to investigate the effects of ethanol volume fraction (%), ammonium sulfate mass fraction (%), solid-liquid ratio (g/mL), ultrasonic temperature (°C), and ultrasonic time (min) on polyphenolic content during extraction. Based on these experiments, three key factors influencing extraction were selected for response surface methodology (RSM) optimization. The results indicated that under conditions of 26% ethanol, 20% ammonium sulfate, a solid-liquid ratio of 1:30, and extraction for 35 minutes at 50°C, the polyphenol content reached 61.62 mg/g. The relative contents of 6'-O-caffeoylarbutin, ß-arbutin, and chlorogenic acid were 34.45%, 4.56%, and 31.06%, respectively. The DPPH· and ABTS+· scavenging rates were above 95% and 96%, respectively, and the ferric reducing ability exhibited a significant dose-effect relationship. The inhibition rates of monophenolase and diphenolase activities of tyrosinase were 43.84% and 35.73%, respectively. The optimized process for ultrasonic-assisted biphasic aqueous extraction of polyphenols from Vaccinium dunalianum Wight leaves demonstrated significant antioxidant and tyrosinase inhibition activities.

5.
Ultrason Sonochem ; 109: 106996, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032371

RESUMO

Extraction of coconut paring oil (CPO) from processing by-products adds value to the product and reduces resource wastage. This study aims to assess the impact of 20 kHz, 20/80 kHz and 20/40/80 kHz of multi-frequency ultrasonic-assisted enzymatic extraction (MFUAEE) on the yield, physicochemical properties, fatty acid composition, total phenolic content, antioxidant activity, and emulsion stability of CPO derived from wet coconut parings (WCP). Results revealed that the CPO extraction yield with MFUAEE was 32.58 % - 43.31 % higher compared to AEE. The tri-frequency 20/40/80 kHz mode of multi-frequency ultrasound pretreatment exhibited the highest CPO extraction yield (70.08 %). The oil extracted through MFUAEE displayed similar fatty acid profiles to AEE, but had lower peroxide value, K232 and K270 values. Particularly, MFUAEE oil contained higher total phenolic content and exhibited potent DPPH free radical scavenging capacity. Results observed by SEM indicated that the pretreatment with multi-frequency ultrasound more efficiently disrupts the cellular structure of the WCP. Additionally, MFUAEE enhanced emulsion stability through the cavitation effect of ultrasound. These findings suggest that MFUAEE is a valuable approach for method for obtaining CPO with elevated extraction yield and superior quality, thereby enhancing the utilization of coconut by-products.

6.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893875

RESUMO

The sulfur in petroleum coke is harmful to carbon products, underscoring the importance of desulfurization for high-sulfur petroleum coke. This paper proposes a method combining alkaline catalytic roasting with ultrasonic oxidation for the deep desulfurization of high-sulfur petroleum coke. The results show that the desulfurization rate reaches 88.99% and the sulfur content is reduced to 0.83 wt.% under a coke particle size of 96-75 µm, sodium-hydroxide-to-petroleum-coke ratio of 50%, roasting temperature of 700 °C, and holding time of 2 h. The alkali-calcined petroleum coke is ultrasonically oxidized and desulfurized in peracetic acid. The results show that, under a hydrogen peroxide content of 10%, hydrogen-peroxide-(liquid)-to-petroleum-coke (solid) ratio of 20 mL/g, acetic acid content of 5 mL, ultrasonic power of 300 W, reaction temperature of 60 °C, and reaction duration of 4 h, the sulfur content is reduced to 0.15 wt.% and the total desulfurization reaches 98.01%. Through a series of characterizations, the proposed desulfurization mechanism is verified. Alkali roasting effectively removes a significant portion of sulfur in petroleum coke. However, the elimination of certain sulfur compounds, such as the more complex thiophene, presents challenges. The thiophene content is subsequently removed via ultrasonic oxidation.

7.
Ultrason Sonochem ; 107: 106933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865900

RESUMO

Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.


Assuntos
Antocianinas , Dessecação , Lycium , Antocianinas/isolamento & purificação , Antocianinas/química , Lycium/química , Dessecação/métodos , Ondas Ultrassônicas , Fracionamento Químico/métodos , Antioxidantes/isolamento & purificação , Antioxidantes/química , Poligalacturonase , Micro-Ondas
8.
Antioxidants (Basel) ; 13(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38929129

RESUMO

Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.

9.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930393

RESUMO

High-volume fraction silicon carbide particle-reinforced aluminum (SiCp/Al) has a promising application for its high specific strength, wear resistance, and thermal conductivity. However, SiCp/Al components with a high-volume fraction are prone to poor surface quality and defects such as fractures, cracks, and micro-pits. It has been reported that ultrasonic-assisted grinding machining (UAG) helps to improve the quality of SiCp/Al machined surfaces. However, the differences between SiCp/Al with different volume fractions obtained by UAG machining are not clear. Therefore, a comparative study of surface roughness, morphology, and cutting force was carried out by UAG machining on SiCp/Al samples with volume fractions of 45% and 60%. Compared to the 45% volume fraction SiCp/Al, the 60% volume fraction SiCp/Al has a higher cutting force and roughness under the same machining parameters. In addition, experiments have shown that cutting forces and surface roughness can be reduced by increasing the tool speed or decreasing the feed rate. UAG machining with an ultrasonic amplitude within 4 µm can also reduce cutting forces and surface roughness. However, more than 6 µm ultrasonic amplitude may lead to an increase in roughness. This study contributes to reasonable parameter settings in ultrasonically-assisted grinding of SiCp/Al with different volume fractions.

10.
Micromachines (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38930637

RESUMO

Ultrasonic vibration has been employed to assist in turning, introducing intermittent machining to reduce average cutting force, minimize tool wear, and enhance machining efficiency, thereby improving surface roughness. However, achieving intermittent cutting necessitates specific conditions, with a cutting speed or feed rate falling below the critical speed associated with the ultrasonic vibration parameters. This study presents a theoretical model for surface formation in cutting-speed-direction ultrasonic-assisted turning (CUAT), covering both continuous and intermittent machining regimes. Experimental validation was conducted on C45 carbon steel and 201 stainless steel to demonstrate the applicability of the theoretical model across different materials. Digital microscope analysis revealed 3D topography consistency with the theoretical formula. Surface roughness evaluations were performed for both CUAT and CT (conventional turning) methods. The results indicated a significant reduction in roughness Ra for C45 steel samples machined with CUAT, up to 80% compared to CT at a cutting speed of 20 m/min, while only exhibiting slight fluctuations when turning 201 stainless steel. Detailed analysis and explanation of these phenomena are presented herein.

11.
Int J Biol Macromol ; 274(Pt 1): 133269, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906353

RESUMO

In order to fulfill the demands for degradability, a broad working range, and heightened sensitivity in flexible sensors, biodegradable polyurethane (BTPU) was synthesized and combined with CNTs to produce BTPU/CNTs coated cotton fabric using an ultrasonic-assisted inkjet printing process. The synthesized BTPU displayed a capacity for degradation in a phosphate buffered saline solution, resulting in a weight loss of 25 % after 12 weeks of degradation. The BTPU/CNTs coated cotton fabric sensor achieved an extensive strain sensing range of 0-137.5 %, characterized by high linearity and a notable sensitivity (gauge factor (GF) of 126.8). Notably, it demonstrated a low strain detection limit (1 %), rapid response (within 280 ms), and robust durability, enabling precise monitoring of both large and subtle human body movements such as finger, wrist, neck, and knee bending, as well as swallowing. Moreover, the BTPU/CNTs coated cotton fabric exhibited favorable biocompatibility with human epidermis, enabling potential applications as wearable skin-contact sensors. This work provides insight into the development of degradable and high sensing performance sensors suitable for applications in electronic skins and health monitoring devices.

12.
Int J Biol Macromol ; 274(Pt 1): 133308, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908619

RESUMO

Loquat leaves are the by-product of loquat fruit production. Polysaccharides are one of the main active ingredients in loquat leaves. In this study, polysaccharides were extracted from loquat leaves by ultrasonic-assisted deep eutectic solvents (DESs) extraction method. Further, the extracted crude loquat leaf polysaccharides (CLLP) were purified and separated via S-8 resin and DEAE-52 cellulose column chromatography, respectively. Additionally, the effects of polysaccharides on activity of sperm in boar semen preserved in medium at 17 °C, were evaluated preliminarily. DES, composed of choline chloride/ethylene glycol (1:6, molar ratio), was proved to be the suitable solvent for LLP extraction. The optimized extraction conditions were water content 44 %, liquid-solid ratio 1:29 (g/g), extraction temperature 61 °C and extraction time 98 min. Under these conditions, the LLP yield was 57.82 ± 1.50 mg/g. A homogeneous polysaccharide (LLP1-2, Mw: 2.17 × 104 Da) was isolated from CLLP. Its total sugar, uronic acid and protein contents were 76.31 ± 1.25 %, 14.19 ± 0.67 % and 3.28 ± 0.42 %, respectively. Further, 800 µg/mL LLP1-2 could effectively enhance the antioxidant activity of sperm. This study laid a foundation for DESs and column chromatography in the field of polysaccharide extraction and separation, proving that LLP can be used as a natural antioxidant for sperm preservation.

13.
Food Chem ; 455: 139939, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870585

RESUMO

This study proposes a method for the ultrasonic extraction of carotenoids and chlorophyll from Scenedesmus obliquus and Arthrospira platensis microalgae with green solvents. Ethanol and ethanolic solutions of ionic liquids were tested with a variety of extraction parameters, including number of extractions, time of extraction, and solid-liquid ratio R(S/L), to determine the optimal conditions. After selecting the most effective green solvent (ethanol), the process conditions were established: R(S/L) of 1:10, three extraction cycles at 3 min each), giving an extraction yield of 2602.36 and 764.21 µgcarotenoids.gdried biomass-1; and 22.01 and 5.81 mgchlorophyll.gdried biomass-1 in S. obliquus and A. platensis, respectively. The carotenoid and chlorophyll extracts obtained using ethanol were shown to be potent scavengers of peroxyl radical, being 5.94 to 26.08 times more potent α-tocopherol. These findings pave the way for a green strategy for valorizing microalgal biocompounds through efficient and environmentally friendly technological processes.


Assuntos
Carotenoides , Clorofila , Química Verde , Microalgas , Scenedesmus , Solventes , Carotenoides/isolamento & purificação , Carotenoides/química , Microalgas/química , Clorofila/química , Clorofila/isolamento & purificação , Solventes/química , Scenedesmus/química , Scenedesmus/crescimento & desenvolvimento , Spirulina/química , Ultrassom , Fracionamento Químico/métodos
14.
Food Chem ; 456: 140034, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870823

RESUMO

Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.


Assuntos
Antioxidantes , Citrus , Extratos Vegetais , Folhas de Planta , Citrus/química , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Química Verde , Solventes/química , Cromatografia com Fluido Supercrítico/métodos , Solventes Eutéticos Profundos/química , Fenóis/química , Fenóis/isolamento & purificação
15.
Ultrason Sonochem ; 108: 106967, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917596

RESUMO

The transformation of salvianolic acid B brought on by heat treatment recovery of ethanol eluent, which is a difficult problem in pharmaceutical technology, affects the purity of raw material when the medicinal raw material salvianolic acid B is purified by resin. Ultrasonic-assisted nanofiltration separation (UANS) was first employed to improve efficiency of resource utilization by regulating rejection and separating salvianolic acid B and rosmarinic acid from organic pharmaceutical wastewater. The rejection was related to three variables: ultrasonic power, pH, and ethanol concentration. But there were differences in the effects of variables on the rejections of salvianolic acid B and rosmarinic acid. The rejections of rosmarinic acid and salvianolic acid B showed a decreasing trend with an increase in ultrasonic power or a decrease in pH; however, when the concentration of ethanol was increased from 5 % to 35 %, the salvianolic acid B rejection increased from 84.96 % to 96.60 % and the rosmarinic acid rejection decreased from 35.09 % to 17.51 %. On the basis of response surface methodology (RSM), the optimal UANS parameters for solution conditions involving different ethanol concentrations are as follows: 10 % ethanol solution (ultrasonic power 500 W and pH 6.15), 20 % ethanol solution (ultrasonic power 500 W and pH 6.54), and 30 % ethanol solution (ultrasonic power 460 W and pH 6.34). The molecular proportions of salvianolic acid B were 10.75 %, 7.13 %, and 8.27 % in 10 %, 20 %, and 30 % ethanol wastewater, while the molecular proportions of rosmarinic acid were 40.52 %, 33.83 %, and 69.87 %, respectively. And the recoveries of salvianolic acid B in 10 %, 20 %, and 30 % ethanol wastewater were 93.56 %, 95.04 %, and 97.30 %, respectively, while the recoveries of rosmarinic acid were 3.19 %, 2.27 %, and 0.56 %. The molecular proportion and the rejection are correlated exponentially. In comparison with conventional nanofiltration separation (CNS), UANS is able to resolve the conflict between rosmarinic acid and salvianolic acid B in pharmaceutical wastewater, as well as enhance resource recycling and separation efficiency to prevent pollution of the environment from pharmaceutical wastewater. Experiments using UANS at different power intensities suggest that the ultrasonic at a power intensity of 46-50 W/L and the power density of 0.92-1.00 W/cm2 may resolve the separation conflict between rosmarinic acid and salvianolic acid B. This work suggests that UANS may be a significant advancement in the field of ultrasonic separation and has several potential uses in the water treatment industry.


Assuntos
Benzofuranos , Etanol , Filtração , Águas Residuárias , Águas Residuárias/química , Benzofuranos/isolamento & purificação , Etanol/química , Filtração/métodos , Nanotecnologia/métodos , Depsídeos/isolamento & purificação , Depsídeos/química , Ácido Rosmarínico , Concentração de Íons de Hidrogênio , Ondas Ultrassônicas , Cinamatos/isolamento & purificação , Cinamatos/química
16.
Food Chem ; 455: 139793, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823128

RESUMO

Cyanidin-3-O-galactoside (Cy3-gal) is the most widespread anthocyanin that has been found to be applicable to nutraceutical and pharmaceutical ingredients. Nevertheless, the process of separation and purification, susceptibilities to heat, and pH inactivation present some limitations. In the present study, natural deep eutectic solvents (NADES) with an ultrasonic-assisted extraction method were briefly studied, and the recovery of Cy3-gal from Rhododendron arboreum was highlighted. The NADES, consisting of choline chloride and oxalic acid (1:1), was screened out as an extractant, and single-factor experiments combined with a two-site kinetic model were employed to describe the extraction process. Further, the work investigated ultrasound-assisted adsorption/desorption to efficiently purify Cy3-gal using macroporous resins. The optimal extraction conditions to attain maximum Cy3-gal yield was 30% water in a 50:1 (mL/g) solvent-to-sample ratio, 11.25 W/cm3 acoustic density, and 50% duty cycle for 16 min of extraction time. Under these conditions, the results revealed 23.07 ± 0.14 mg/g of Cy3-gal, two-fold higher than the traditional solvents. Furthermore, of the different resins used, Amberlite XAD-7HP showed significantly (p < 0.05) higher adsorption/desorption capacities (12.82 ± 0.18 mg/g and 10.97 ± 0.173 mg/g) and recovery (48.41 ± 0.76%) percent over other adsorbents. Experiments on the degrading behavior (40-80 °C) of the recovered Cy3-gal were performed over time, and the first-order kinetic model better explained the obtained data. In conclusion, the study asserts the use of ultrasonication with NADES and XAD-7HP resin for the improved purification of Cy3-gal from the crude extract.


Assuntos
Antocianinas , Extratos Vegetais , Rhododendron , Termodinâmica , Cinética , Antocianinas/química , Antocianinas/isolamento & purificação , Rhododendron/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes Eutéticos Profundos/química , Galactosídeos/química , Galactosídeos/isolamento & purificação , Adsorção , Fracionamento Químico/métodos
17.
Ultrason Sonochem ; 108: 106961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936294

RESUMO

In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.


Assuntos
Fatores Imunológicos , Peso Molecular , Nostoc commune , Ondas Ultrassônicas , Nostoc commune/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fracionamento Químico/métodos , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
18.
Food Chem ; 452: 139508, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733681

RESUMO

In this study, an ultrasonic-assisted natural deep eutectic solvent (NaDES) was used to extract flavonoids from Perilla frutescens (L.) Britt. leaves. Of 10 tested NaDESs, that comprising D-(+)-glucose and glycerol exhibited the best total flavonoid extraction rate. Response surface methodology (RSM) was used for extraction modeling and optimization, and the total flavonoid content reached 87.48 ± 1.61 mg RE/g DW, which was a significant increase of 5.36% compared with that of 80% ethanol extraction. Morphological changes in P. frutescens leaves before and after extraction were analyzed by scanning electron microscopy (SEM), and the mechanism of NaDES formation was studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, 10 flavonoids were identified by UPLC-Q-TOF-MS. In addition, the NaDES extract had better biological activity according to five kinds of antioxidant capacity measurements, cyclooxygenase-2 (COX-2) and hyaluronidase (Hyal) inhibition experiments. Moreover, the stability test revealed that the total flavonoid loss rate of the NaDES extract after four weeks was 37.75% lower than that of the ethanol extract. These results indicate that the NaDES can effectively extract flavonoids from P. frutescens leaves and provide a reference for further applications in the food, medicine, health product and cosmetic industries.


Assuntos
Perilla frutescens , Flavonoides/química , Flavonoides/isolamento & purificação , Perilla frutescens/química , Folhas de Planta/química , Solventes Eutéticos Profundos/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ultrassom , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/química , Antioxidantes/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo
19.
Talanta ; 277: 126236, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795590

RESUMO

The dyeing and adulteration of traditional Chinese medicines (TCMs) are continuously updated. Valuable analytical methods for the daily inspection of illegal colorant additives in TCMs and the preparations are in demand. Two deep eutectic solvent (DES)-based vortex-assisted liquid-liquid microextraction (VA-LLME) and ultrasonic-assisted solid-liquid microextraction (UA-SLME) were developed for the sample pretreatment of ten water-soluble colorants and five water-insoluble colorants, respectively, followed by an HPLC-DAD detection. Fifteen colorants were analyzed at four detection wavelengths within 40 min of gradient elution. The optimal DES of VA-LLME and UA-SLME were screened from 23 homemade DESs. The factors affecting the extraction efficiency of VA-LLME and UA-SLME were optimized systematically. Under the optimal conditions, ten water-soluble colorants analyzed by DES-based VA-LLME-HPLC-DAD showed good linearity (R ≥ 0.9995) within the optimal linear range. The LODs and LOQs were 0.2-1.0 µg g-1 and 0. 5-5.0 µg g-1, respectively. The recoveries of spiked samples were 80.2%-104.7 %, with RSDs ≤ 4.39 %. Five water-insoluble colorants of Sudan I‒IV and Sudan 7B analyzed by DES-based UA-SLME-HPLC-DAD showed good linearity (R ≥ 0.9995) within the optimal linear range. The LODs and LOQs were 0.8-8.0 µg g-1 and 4.0-40.0 µg g-1, respectively. The recoveries of spiked samples were 94.2%-103.1 %, with RSDs ≤ 4.81 %. The proposed DES-based VA-LLME-HPLC-DAD was successfully applied to analyze six water-soluble yellow colorants in Cuscutae Semen, salted Cuscutae Semen, and four water-soluble red colorants in Schisandrae Chinensis Fructus. The proposed DES-based UA-SLME-HPLC-DAD was successfully applied to analyze five water-insoluble red colorants in Dieda pills. The study provides analytical method options for routine tests of water-soluble, water-insoluble, or both water-soluble/-insoluble illegal colorant additives in herbal medical materials and preparations by the relevant proposed DES-based sample pretreatment method or a combination of the two proposed DES-based methods.


Assuntos
Corantes , Medicamentos de Ervas Chinesas , Interações Hidrofóbicas e Hidrofílicas , Microextração em Fase Líquida , Cromatografia Líquida de Alta Pressão/métodos , Microextração em Fase Líquida/métodos , Corantes/química , Corantes/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Solventes/química
20.
Front Pharmacol ; 15: 1386509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769997

RESUMO

The Stachys L. genus has been widely used in traditional medicine in many countries throughout the world. The study aimed to investigate the chemical composition and bioactivity of the hydroethanolic extract (50% v/v) obtained by ultrasonication from the aerial flowering parts of Stachys sylvatica L. (SSE) collected in Almaty region (Southern Kazakhstan). According to RP-HPLC/PDA analysis the leading metabolites of the SSE belonged to polyphenols: chlorogenic acid and its isomers (2.34 mg/g dry extract) and luteolin derivatives (1.49 mg/g dry extract), while HPLC-ESI-QTOF-MS/MS-based qualitative fingerprinting revealed the presence of 17 metabolites, mainly chlorogenic acid and its isomers, flavonoid glycosides, and verbascoside with its derivatives. GC-MS analysis of the volatile metabolites showed mainly the presence of diterpenoids and fatty acid esters. A reduction in the viability of nematodes Rhabditis sp. was obtained for the SSE concentration of 3.3 mg/mL, while 11.1 mg/mL showed activity comparable to albendazole. The SSE exhibited higher activity against Gram-positive (MIC = 0.5-2 mg/mL) than Gram-negative bacteria and yeast (MIC = 8 mg/mL), exerting bactericidal and fungicidal effects but with no sporicidal activity. The SSE showed some antiviral activity against HCoV-229E replicating in MRC-5 and good protection against the cytopathic effect induced by HHV-1 in VERO. The SSE was moderately cytotoxic towards human cervical adenocarcinoma (H1HeLa) cells (CC50 of 0.127 mg/mL after 72 h). This study provides novel information on the SSE extract composition and its biological activity, especially in the context of the SSE as a promising candidate for further antiparasitic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...