Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
2.
Adv Sci (Weinh) ; : e2402578, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005234

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.

3.
Biol Pharm Bull ; 47(7): 1275-1281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987176

RESUMO

The generation of DNA damage causes mutations and consequently cancer. Reactive oxygen species are important sources of DNA damage and some mutation signatures found in human cancers. 8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) is one of the most abundant oxidized bases and induces a G→T transversion mutation at the modified site. The damaged G base also causes untargeted base substitution mutations at the G bases of 5'-GpA-3' dinucleotides (action-at-a-distance mutations) in human cells, and the cytosine deaminase apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) is involved in the mutation process. The deaminated cytosine, i.e., uracil, bases are expected to be removed by uracil DNA glycosylase. Most of the substitution mutations at the G bases of 5'-GpA-3' might be caused by abasic sites formed by the glycosylase. In this study, we expressed the uracil DNA glycosylase inhibitor from Bacillus subtilis bacteriophage PBS2 in human U2OS cells and examined the effects on the GO-induced action-at-a-distance mutations. The inhibition of uracil DNA glycosylase increased the mutation frequency, and in particular, the frequency of G→A transitions. These results indicated that uracil DNA glycosylase, in addition to APOBEC3, is involved in the untargeted mutation process induced by GO.


Assuntos
Guanina , Mutação , Uracila-DNA Glicosidase , Humanos , Guanina/análogos & derivados , Guanina/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Linhagem Celular Tumoral , Dano ao DNA , Bacillus subtilis/genética , Bacteriófagos/genética
4.
Biotechnol J ; 19(7): e2400097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987221

RESUMO

DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.


Assuntos
Sistemas CRISPR-Cas , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Sistemas CRISPR-Cas/genética , Humanos , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética
5.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38979205

RESUMO

Human APOBEC single-strand (ss) specific DNA and RNA cytidine deaminases change cytosines to uracils and function in antiviral innate immunity, RNA editing, and can cause hypermutation in chromosomes. The resulting uracils can be directly replicated, resulting in C to T mutations, or uracil-DNA glycosylase can convert the uracils to abasic (AP) sites which are then fixed as C to T or C to G mutations by translesion DNA polymerases. We noticed that in yeast and in human cancers, contributions of C to T and C to G mutations depends on the origin of ssDNA mutagenized by APOBECs. Since ssDNA in eukaryotic genomes readily binds to replication protein A (RPA) we asked if RPA could affect APOBEC-induced mutation spectrum in yeast. For that purpose, we expressed human APOBECs in the wild-type yeast and in strains carrying a hypomorph mutation rfa1-t33 in the large RPA subunit. We confirmed that the rfa1-t33 allele can facilitate mutagenesis by APOBECs. We also found that the rfa1-t33 mutation changed the ratio of APOBEC3A-induced T to C and T to G mutations in replicating yeast to resemble a ratio observed in long-persistent ssDNA in yeast and in cancers. We present the data suggesting that RPA may shield APOBEC formed uracils in ssDNA from Ung1, thereby facilitating C to T mutagenesis through the accurate copying of uracils by replicative DNA polymerases. Unexpectedly, we also found that for uracils shielded from Ung1 by wild-type RPA the mutagenic outcome is reduced in the presence of translesion DNA polymerase zeta.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38958169

RESUMO

OBJECTIVES: Dihydropyrimidinase deficiency is a rare autosomal recessive disorder of the pyrimidine degradation pathway, with fewer than 40 patients published. Clinical findings are variable and some patients may remain asymptomatic. Global developmental delay and increased susceptibility to 5-fluorouracil are commonly reported. Here we present atrioventricular septal defect as a novel feature in dihydropyrimidinase deficiency. CASE PRESENTATION: A four-year-old male with global developmental delay, dysmorphic facies, autistic features and a history of seizures was diagnosed with dihydropyrimidinase deficiency based on strikingly elevated urinary dihydrouracil and dihydrothymine and a homozygous pathogenic nonsense variant in DPYS gene. He had a history of complete atrioventricular septal defect corrected surgically in infancy. CONCLUSIONS: This is the second report of congenital heart disease in dihydropyrimidinase deficiency, following a single patient with a ventricular septal defect. The rarity of the disease and the variability of the reported findings make it difficult to describe a disease-specific clinical phenotype. The mechanism of neurological and other systemic findings is unclear. Dihydropyrimidinase deficiency should be considered in patients with microcephaly, developmental delay, epilepsy and autistic traits. We suggest that congenital heart disease may also be a rare phenotypic feature.

7.
Biosens Bioelectron ; 262: 116545, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971040

RESUMO

Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the HgII-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine. The high sensitivity of the developed method results in a low limit of detection (≈1.3 nM) in human plasma samples, falling below the practical cut-off level of 15 ng mL-1 (≈0.14 µM). This threshold concentration is crucial for predicting 5-FU toxicity, as reported in buffer, and ≤1.15% in biological samples), and accuracy (recovery percentage close to 100%).


Assuntos
Técnicas Biossensoriais , Deficiência da Di-Hidropirimidina Desidrogenase , Eletrodos , Fluoruracila , Mercúrio , Uracila , Humanos , Uracila/sangue , Mercúrio/sangue , Limite de Detecção , Técnicas Eletroquímicas/métodos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
8.
IUCrdata ; 9(Pt 5): x240431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846558

RESUMO

In the structure of the title complex, [Zn(C4H2FN2O2)(C10H24N4)]ClO4, the zinc(II) ion forms coordination bonds with the four nitro-gen atoms of cyclam (1,4,8,11-tetra-aza-cyclo-tetra-decane or [14]aneN4) as well as with the nitro-gen atom of a deprotonated 5-fluoro-uracil ion (FU-). Cyclam adopts a trans-I type conformation within this structure. The coordination structure of the zinc(II) ion is a square pyramid with a distorted base plane formed by the four nitro-gen atoms of the cyclam. FU- engages in inter-molecular hydrogen bonding with neighboring FU- mol-ecules and with the cyclam mol-ecule.

9.
Clin Chem Lab Med ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896022

RESUMO

OBJECTIVES: Dihydropyrimidine dehydrogenase (DPD) deficiency is the main cause of severe fluoropyrimidine-related toxicities. The best strategy for identifying DPD-deficient patients is still not defined. The EMA recommends targeted DPYD genotyping or uracilemia (U) testing. We analyzed the concordance between both approaches. METHODS: This study included 19,376 consecutive French patients with pre-treatment plasma U, UH2 and targeted DPYD genotyping (*2A, *13, D949V, *7) analyzed at Eurofins Biomnis (2015-2022). RESULTS: Mean U was 9.9 ± 10.1 ng/mL (median 8.7, range 1.6-856). According to French recommendations, 7.3 % of patients were partially deficient (U 16-150 ng/mL) and 0.02 % completely deficient (U≥150 ng/mL). DPYD variant frequencies were *2A: 0.83 %, *13: 0.17 %, D949V: 1.16 %, *7: 0.05 % (2 homozygous patients with U at 22 and 856 ng/mL). Variant carriers exhibited higher U (median 13.8 vs. 8.6 ng/mL), and lower UH2/U (median 7.2 vs. 11.8) and UH2/U2 (median 0.54 vs. 1.37) relative to wild-type patients (p<0.00001). Sixty-six% of variant carriers exhibited uracilemia <16 ng/mL, challenging correct identification of DPD deficiency based on U. The sensitivity (% patients with a deficient phenotype among variant carriers) of U threshold at 16 ng/mL was 34 %. The best discriminant marker for identifying variant carriers was UH2/U2. UH2/U2<0.942 (29.7 % of patients) showed enhanced sensitivity (81 %) in identifying deleterious genotypes across different variants compared to 16 ng/mL U. CONCLUSIONS: These results reaffirm the poor concordance between DPD phenotyping and genotyping, suggesting that both approaches may be complementary and that targeted DPYD genotyping is not sufficiently reliable to identify all patients with complete deficiency.

10.
Int J Clin Oncol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833114

RESUMO

BACKGROUND: The efficacy of adjuvant chemotherapy for high-risk stage II colon cancer (CC) has not been well established. Using propensity score matching, we previously reported that the 3-year disease-free survival (DFS) rate was significantly higher in patients treated with uracil and tegafur plus leucovorin (UFT/LV) against surgery alone. We report the final results, including updated 5-year overall survival (OS) rates and risk factor analysis outcomes. METHODS: In total, 1902 high-risk stage II CC patients with T4, perforation/penetration, poorly differentiated adenocarcinoma/mucinous carcinoma, and/or < 12 dissected lymph nodes were enrolled in this prospective, non-randomized controlled study based on their self-selected treatment. Oral UFT/LV therapy was administered for six months after surgery. RESULTS: Of the 1880 eligible patients, 402 in Group A (surgery alone) and 804 in Group B (UFT/LV) were propensity score-matched. The 5-year DFS rate was significantly higher in Group B than in Group A (P = 0.0008). The 5-year OS rates were not significantly different between groups. The inverse probability of treatment weighting revealed significantly higher 5-year DFS (P = 0.0006) and 5-year OS (P = 0.0122) rates in group B than in group A. Multivariate analyses revealed that male sex, age ≥ 70 years, T4, < 12 dissected lymph nodes, and no adjuvant chemotherapy were significant risk factors for DFS and/or OS. CONCLUSION: The follow-up data from our prospective non-randomized controlled study revealed a considerable survival advantage in DFS offered by adjuvant chemotherapy with UFT/LV administered for six months over surgery alone in individuals with high-risk stage II CC. TRIAL REGISTRATION: Japan Registry of Clinical Trials: jRCTs031180155 (date of registration: 25/02/2019), UMIN Clinical Trials Registry: UMIN000007783 (date of registration: 18/04/2012).

11.
Anal Biochem ; 692: 115569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750682

RESUMO

Isothermal nucleic acid amplification techniques are attracting increasing attention in molecular diagnosis and biotechnology. However, most existing techniques are complicated by the need for intricate primer design and numerous enzymes and primers. Here, we have developed a simple method, termed NAQ, that employs adding both endonuclease Q (EndoQ) and dUTP/dITP to conventional rolling circle amplification reactions to increase DNA amplification. NAQ does not require intricate primer design or DNA sequence-specific enzymes, and existing isothermal amplification techniques could be readily adapted to include both EndoQ and dUTP/dITP.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Endonucleases/metabolismo , Endonucleases/genética
12.
J Agric Food Chem ; 72(25): 14229-14240, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797952

RESUMO

Fusarium verticillioides (F. verticillioides) is a globally recognized and highly impactful fungal pathogen of maize, causing yield losses and producing harmful mycotoxins that pose a threat to human and animal health. However, the genetic tools available for studying this crucial fungus are currently limited in comparison to other important fungal pathogens. To address this, an efficient CRISPR/Cas9 genome editing system based on an autonomously replicating plasmid with an AMA1 sequence was established in this study. First, gene disruption of pyrG and pyrE via nonhomologous end-joining (NHEJ) pathway was successfully achieved, with efficiency ranging from 66 to 100%. Second, precise gene deletions were achieved with remarkable efficiency using a dual sgRNA expression strategy. Third, the developed genome editing system can be applied to generate designer chromosomes in F. verticillioides, as evidenced by the deletion of a crucial 38 kb fragment required for fumonisin biosynthesis. Fourth, the pyrG recycling system has been established and successfully applied in F. verticillioides. Lastly, the developed ΔFUM1 and ΔFUM mutants can serve as biocontrol agents to reduce the fumonisin B1 (FB1) contamination produced by the toxigenic strain. Taken together, these significant advancements in genetic manipulation and biocontrol strategies provide valuable tools for studying and mitigating the impact of F. verticillioides on maize crops.


Assuntos
Sistemas CRISPR-Cas , Proteínas Fúngicas , Fusarium , Edição de Genes , Micotoxinas , Zea mays , Fusarium/genética , Fusarium/metabolismo , Edição de Genes/métodos , Zea mays/microbiologia , Micotoxinas/metabolismo , Micotoxinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fumonisinas/metabolismo , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle
13.
FEBS Open Bio ; 14(7): 1040-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783588

RESUMO

Allostery is an important property of biological macromolecules which regulates diverse biological functions such as catalysis, signal transduction, transport, and molecular recognition. However, the concept was expressed using two different definitions by J. Monod and, over time, more have been added by different authors, making it fuzzy. Here, we reviewed the different meanings of allostery in the current literature and found that it has been used to indicate that the function of a protein is regulated by heterotropic ligands, and/or that the binding of ligands and substrates presents homotropic positive or negative cooperativity, whatever the hypothesized or demonstrated reaction mechanism might be. Thus, proteins defined to be allosteric include not only those that obey the two-state concerted model, but also those that obey different reaction mechanisms such as ligand-induced fit, possibly coupled to sequential structure changes, and ligand-linked dissociation-association. Since each reaction mechanism requires its own mathematical description and is defined by it, there are many possible 'allosteries'. This lack of clarity is made even fuzzier by the fact that the reaction mechanism is often assigned imprecisely and/or implicitly in the absence of the necessary experimental evidence. In this review, we examine a list of proteins that have been defined to be allosteric and attempt to assign a reaction mechanism to as many as possible.


Assuntos
Proteínas , Regulação Alostérica , Ligantes , Proteínas/metabolismo , Proteínas/química , Humanos , Ligação Proteica , Modelos Moleculares
14.
Sci Rep ; 14(1): 11609, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773214

RESUMO

No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Bucais , Pirimidinas , Uracila , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Uracila/metabolismo , Biomarcadores Tumorais/metabolismo , Pirimidinas/metabolismo , Feminino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral , Idoso , Apirase/metabolismo
15.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794150

RESUMO

Due to the increasing populations of anthelmintic-resistant gastrointestinal nematodes and as a consequence of the adverse effects of synthetic drugs, this study focuses on the search for secondary metabolites with nematocidal activity from the edible mushroom Pleurotus djamor using The proton nuclear magnetic resonance (1H-NMR) metabolomics. The highest activity was shown by the ethyl acetate fractions of mycelium (EC50 290.8 µg/mL) and basidiomes (EC50 282.7 µg/mL). Principal component analysis (PCA) and hierarchical data analysis (HCA) of the 1H-NMR metabolic profiles data showed that the ethanolic extracts, the ethyl acetate, butanol, and water fractions from mycelium have different metabolic profiles than those from basidiomes, while low polarity (hexane) fractions from both stages of fungal development show similar profiles. Orthogonal partial least squares discriminant analysis (OPLS-DA) allowed the identification of signals in the 1H-NMR metabolic profile associated with nematocidal activity. The signals yielded via OPLS-DA and bidimensional NMR analysis allowed the identification of uracil as a component in the ethyl acetate fraction from basidiomes, with an EC50 of 237.7 µg/mL. The results obtained showed that chemometric analyses of the 1H-NMR metabolic profiles represent a viable strategy for the identification of bioactive compounds from samples with complex chemical profiles.

16.
J Microbiol Biotechnol ; 34(5): 1178-1187, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563100

RESUMO

Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.


Assuntos
Agrobacterium tumefaciens , Cordyceps , Transformação Genética , Uracila , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Cordyceps/genética , Cordyceps/metabolismo , Cordyceps/crescimento & desenvolvimento , Uracila/metabolismo , Histidina/metabolismo , Uridina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Hidroliases/genética , Hidroliases/metabolismo , Genes Reporter , Mutação , Recombinação Homóloga
17.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688279

RESUMO

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Assuntos
Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Uracila-DNA Glicosidase , Uracila , Humanos , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
18.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566117

RESUMO

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Assuntos
DNA Polimerase Dirigida por DNA , Uracila , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por DNA/genética , Uracila/metabolismo , Plasmídeos , DNA
19.
ACS Synth Biol ; 13(4): 1303-1311, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38529630

RESUMO

In this study, we proposed a biological approach to efficiently produce pseudouridine (Ψ) from glucose and uracil in vivo using engineered Escherichia coli. By screening host strains and core enzymes, E. coli MG1655 overexpressing Ψ monophosphate (ΨMP) glycosidase and ΨMP phosphatase was obtained, which displayed the highest Ψ concentration. Then, optimization of the RBS sequences, enhancement of ribose 5-phosphate supply in the cells, and overexpression of the membrane transport protein UraA were investigated. Finally, fed-batch fermentation of Ψ in a 5 L fermentor can reach 27.5 g/L with a yield of 89.2 mol % toward uracil and 25.6 mol % toward glucose within 48 h, both of which are the highest to date. In addition, the Ψ product with a high purity of 99.8% can be purified from the fermentation broth after crystallization. This work provides an efficient and environmentally friendly protocol for allowing for the possibility of Ψ bioproduction on an industrial scale.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Pseudouridina/metabolismo , Glucose/metabolismo , Uracila/metabolismo , Reatores Biológicos , Fermentação , Engenharia Metabólica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo
20.
J Biosci Bioeng ; 137(6): 413-419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485553

RESUMO

Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the enzyme purification. The purified enzyme was a heteromer consisting of three different subunits. The enzyme catalyzed oxidation of uracil to barbituric acid with artificial electron acceptors such as methylene blue, phenazine methosulfate, benzoquinone, and α-naphthoquinone; however, NAD+, NADP+, flavin adenine dinucleotide, and flavin mononucleotide did not serve as electron acceptors. The enzyme acted not only on uracil and thymine but also on 5-halogen-substituted uracil and hydroxypyrimidine (pyrimidone), while dihydropyrimidine, which is an intermediate in reductive pyrimidine metabolism, and purine did not serve as substrates. The activity of UTDH was enhanced by cerium ions, and this activation was observed with all combinations of substrates and electron acceptors.


Assuntos
Oxirredução , Pirimidinas , Rhodococcus , Uracila , Uracila/metabolismo , Uracila/química , Pirimidinas/metabolismo , Rhodococcus/enzimologia , NADP/metabolismo , Azul de Metileno/metabolismo , Azul de Metileno/química , Barbitúricos/metabolismo , Barbitúricos/química , Benzoquinonas/metabolismo , Benzoquinonas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Timina/metabolismo , Timina/química , Especificidade por Substrato , Metilfenazônio Metossulfato/metabolismo , Metilfenazônio Metossulfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...