RESUMO
Since 2000, a well-established population of the invasive oriental shrimp Palaemon macrodactylus has been present in fully marine conditions in the southwestern Atlantic Ocean (~38° S). To assess the physiological performance of this atypical population restricted to fully marine conditions, we conducted a laboratory experiment in which individuals were transferred from 35 S (local seawater) to 2 S; 5 S; 10 S; 20 S; 50 S and 60 for short (6 h), medium (48 h), and long (>504 h) acclimation periods. We measured the time course response of relevant parameters in the shrimp's hemolymph; activity of Na+, K+-ATPase (NKA), and V-H+-ATPase (VHA); and muscle water content. Shrimp showed great osmoregulatory plasticity, being able to survive for long periods between 5 S and 50 S, whereas no individual survived after transfer to either 2 S or 60 S. Shrimp hyper-regulated hemolymph osmolality at 5 S and 10 S, hypo-regulated at 35 S and 50 S, and isosmoticity was close to 20 S. Compared to 35 S, prolonged acclimation to 5 S caused a decrease in hemolymph osmolality (~34%) along with sodium and chloride concentrations (~24%); the NKA and VHA activities decreased by ~52% and ~88%, respectively, while muscle water content was tightly regulated. Our results showed that the atypical population of P. macrodactylus studied here lives in a chronic hypo-osmo-ion regulatory state and suggest that fully marine conditions contribute to its poor performance at the lower limit of salinity tolerance (<5 S).
Assuntos
Palaemonidae , Animais , Palaemonidae/fisiologia , Salinidade , Espécies Introduzidas , Hemolinfa/química , Aclimatação/fisiologia , Água do Mar/químicaRESUMO
Previous studies have suggested that the capacity of natural dissolved organic carbon (DOC) molecules to interact with biological membranes is associated with their aromaticity (SAC340 ); origin (allochthonous versus autochthonous, FI); molecular weight (Abs254/365 ); and relative fluorescence of DOC moieties (PARAFAC analysis). These interactions may be especially important when fish are challenged by acidic waters, which are known to inhibit the active uptake of Na+ and Cl- , while stimulating diffusive ion losses in freshwater fishes. Therefore, zebrafish were acclimated (7 days, pH 7.0) to five natural DOC sources (10 mg C/L), two from the Amazon Basin and three from Canada, together with a "no-added DOC" control. After the acclimation, fish were challenged by exposure to acidic water (pH 4.0) for 3 h. Osmoregulatory parameters were measured at pH 7.0 and 4.0. Acclimation to the five DOC sources did not disturb Na+ , Cl- and ammonia net fluxes, but resulted in differential elevations in Na+ , K+ ATPase and v-type H+ ATPase activities in fish at pH 7.0. However, after transfer to pH.4.0, the control fish exhibited rapid increases in both enzymes. In contrast the DOC- acclimated animals exhibited unchanged (Na+ , K+ ATPase) or differentially increased (v-type H+ ATPase) activities. Na+ , Cl- and ammonia net fluxes remained unchanged in the control fish, but were differentially elevated in most of the DOC treatments at pH 4.0, relative to the same DOC treatments at pH 7.0. Correlations between the osmoregulatory data the DOCs properties highlight that the DOC properties drive different effects on gill physiology.
Assuntos
Matéria Orgânica Dissolvida , Peixe-Zebra , Amônia , Animais , Brânquias , SódioRESUMO
Formation water (FoW) is a by-product from oil and gas production and usually has high concentrations of soluble salts and metals. Calcium (Ca) and magnesium (Mg) have been shown to reduce the toxicity of metals to aquatic animals, and previous study showed that high waterborne Ca exerts mild effect against disturbances on Na+ regulation in Amazonian armored catfish tamoatá (Hoplosternum littorale) acutely exposed to high Fe, Mn, and Ba levels. Here, we hypothesized that high Mg levels might also reduce the toxic effects of these metals on Na+ regulation of tamoatá. The exposure to 5% FoW promoted an increase in Na+ uptake and a rapid accumulation of Na+ in all tissues analyzed (kidneyAssuntos
Bário/química
, Cálcio/metabolismo
, Peixes-Gato/metabolismo
, Brânquias/metabolismo
, Íons/química
, Magnésio/química
, Sódio/metabolismo
, Poluentes Químicos da Água/análise
, Animais
, Bário/toxicidade
, Cálcio/toxicidade
, Magnésio/toxicidade
, Sódio/química
, Sódio/toxicidade
, Poluentes Químicos da Água/química