Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33985697

RESUMO

Coal burning generates gases, particles, and condensation by-products that are harmful to soil, water, and to the atmosphere. The aim of this study was to characterize and identify the cytotoxic and mutagenic potential of soil samples from the cities of Aceguá, Bagé, Candiota and Pinheiro Machado, near a large coal-fired power plant. Our study describes soil characteristics and contributes to the evaluation of the genotoxic activity of coal mining and burning, using the Comet Assay and Micronucleus test in V79 cells, as well as mutagenicity assays with Salmonella typhimurium strains. Comet Assay results show that the winter soil samples of Candiota and Pinheiro Machado induced a significant increase of the Damage Index for cells, as well as for the Aceguá summer sample. The micronucleus test did not detect differences between cities and seasons. A component analysis indicates associations between results obtained in Comet Assay and Ti and phenanthene concentrations for Pinheiro Machado during the winter, and Al for Aceguá during the summer and Zn during the winter. Results of Salmonella/microsome assays were negative, only Candiota and Pinheiro Machado samples showed a statistical increase of his + colonies in TA102. Our work describes biological data on these cells exposed to coal-contaminated soil, confirming the sensitivity of the Comet Assay in V79 cells and Salmonella/microsome assay for the evaluation of the effects of complex mixtures. These findings help to understand the spatial distribution of contaminants in the local soil related to a power plant, which is important for planning public safety actions.


Assuntos
Carvão Mineral/análise , Solo/química , Animais , Brasil , Linhagem Celular , Cidades , Carvão Mineral/toxicidade , Minas de Carvão/métodos , Ensaio Cometa/métodos , Cricetulus , Dano ao DNA/efeitos dos fármacos , Monitoramento Ambiental/métodos , Testes para Micronúcleos/métodos , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Centrais Elétricas , Estações do Ano
2.
J Toxicol Environ Health A ; 84(17): 689-701, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34034641

RESUMO

Nicotiana tabacum is the most cultivated tobacco species in the state of Rio Grande do Sul, Brazil. Workers who handle the plant are exposed to the leaf components during the harvesting process and when separating and classifying the dried leaves. In addition to nicotine, after the drying process, other components may be found including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, as well as pesticides residues. The objective of this study was to examine the genotoxicity attributed to the aqueous extract of dried tobacco leaves obtained from tobacco barns using Chinese hamster lung fibroblast cells (V79) as a model system by employing alkaline comet assay, micronucleus (MN) and Ames test. MTT assay was used to assess cytotoxicity and establish concentrations for this study. Data demonstrated cell viability > 85% for concentrations of 0.625-5 mg/ml while the comet assay indicated a significant increase in DNA damage at all concentrations tested. A significant elevation of MN and nuclear buds (NBUD) was found for 5 mg/ml compared to control and other dry tobacco leaves concentrations (0.625-2.5 mg/ml). Mutagenicity was not found using the Salmonella/Microsome test (TA98, TA100, and TA102 strains) with and without metabolic activation. The concentration of inorganic elements was determined employing the PIXE technique, and 13 inorganic elements were detected. Using CG/MS nicotine amounts present were 1.56 mg/g dry tobacco leaf powder. Due to the observed genotoxicity in V79 cells, more investigations are needed to protect the health of tobacco workers exposed daily to this complex mixture of toxic substances present in dry tobacco leaves.


Assuntos
Mutagênicos/toxicidade , Nicotiana/química , Folhas de Planta/química , Animais , Linhagem Celular , Ensaio Cometa , Cricetulus , Testes para Micronúcleos , Testes de Mutagenicidade
3.
J Toxicol Environ Health A ; 83(19-20): 659-671, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-32865139

RESUMO

CECROPIA PACHYSTACHYA: leaves are popularly used to treat asthma and diabetes. Despite the widespread consumption of this plant, there are few scientific studies regarding its toxicological potential. In order to conduct a thorough study concerning the potential adverse effects, the aim of this study was to assess acute and subacute toxicity tests of crude aqueous extract from C. pachystachya leaves (CAE-Cp) using in vivomodel, as well as in vitro cytotoxicity, genotoxicity and antioxidant activity. In addition, genotoxicity, and cytotoxicity of chlorogenic acid (CGA) and cytotoxicity of isoorientin (ISOO) were also evaluated. The antioxidant activity was verified by DPPH, cytotoxicity using sulforhodamine B (SRB) assay and genotoxicity by comet assay on V79 cells. The phytochemical analysis of CAE-Cp detected flavonoids and tannins, CGA and ISOO as the major compounds utilizing HPLC. The total flavonoid content (6.52 mg/g EQ) and antioxidant activity (EC50 = 62.15 µg/ml) of CAE-Cp were determined. In vitro evaluations with CAE-Cp showed genotoxic effects at 0.31 to 2.5 mg/ml and an expressive cytotoxicity on HT-29 (IC50 = 4.43 µg/ml) cells. CGA was genotoxic against V79 cells at 0.07 mg/ml and cytotoxic against to HT-29 (IC50 = 71.70 µg/ml), OVCAR-3 (IC50 = 80.07 µg/ml), MCF-7 (IC50 = 45.58 µg/ml) and, NCI-H460 (IC50 = 71.89 µg/ml) cancer cell lines. Wistar rats treated with a single dose (2,000 mg/kg) CAE-Cp decreased hemoglobin levels after 14 days, although no significant toxicity was observed in animals after 28 days. In view of the in vitro cytotoxicity and genotoxicity detected, further studies are necessary to establish the safe use of CAE-Cp.


Assuntos
Antioxidantes/toxicidade , Cecropia/química , Ácido Clorogênico/toxicidade , Citotoxinas/toxicidade , Luteolina/toxicidade , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Masculino , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Wistar , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
4.
Chemosphere ; 169: 239-248, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27880922

RESUMO

Brewery effluents contain complex mixtures that are discharged into rivers. Therefore, it is necessary to evaluate the genotoxic potential of these effluents. The study evaluated the genotoxicity of surface water and sediment samples from the Jacuí River in the state of Rio Grande do Sul, Brazil, which received effluents discharged from a brewery. The Salmonella/microsome test, Comet Assay and Micronucleus test on V79 cells, as well as the element profile (PIXE) and PAHs levels were used for this purpose. The surface water and sediment samples were collected in summer at three sites: 1 km upstream from the brewery discharge site (Site A); in front of the effluent discharge site, after chemical and biological treatment (Site B); about 1 km downstream from the discharge site (Site C). Only a sediment sample from Site A induced a mutagenic effect using the Salmonella/microsoma test (TA97a). All three sites presented genotoxicity (A, B and C), both for water and sediments using comet assay, and mutagenicity in the samples from Site B (surface water) and Site A and Site C (sediments) using the micronuclei tests. The results of PIXE and PAHs showed higher levels of elements for samples obtained from sites upstream and downstream from the effluent discharge. Environmental samples consist of complex mixtures of chemicals, and it is difficult to associate DNA damage with a specific element. This study showed that brewery effluent contains metals and PAHs that can induce in vitro genotoxicity under the conditions of this study.


Assuntos
Cerveja , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Brasil , Ensaio Cometa , Dano ao DNA , Monitoramento Ambiental/métodos , Resíduos Industriais , Testes para Micronúcleos , Mutagênicos/toxicidade , Rios , Poluentes Químicos da Água/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-27476330

RESUMO

Several studies have reported that guanylhydrazones display a variety of desirable biological properties, such as antihypertensive, antibacterial, and antimalarial behaviour. They furthermore promote anti-pneumocystosis and anti-trypanosomiasis, exhibit antitumor activity, and show significant cytotoxicity against cancer cell lines. In this work, we have evaluated the cytotoxicity, mutagenicity, and genotoxicity of two guanylhydrazones derivatives, (E)-2-[(2,3-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (2,3-DMeB) and (E)-2-[(3,4-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (3,4-DMeB), in different biological models. Both 2,3-DMeB and 3,4-DMeB induce weak cytotoxic and mutagenic effects in bacteria and yeast. The genotoxicity of these compounds was determined in a fibroblast cell line (V79) using alkaline comet assay, as well as a modified comet assay with bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). Both guanylhydrazone derivatives induced DNA damage. Treatment of V79 cells with EndoIII and FPG proteins demonstrated a significant effect of 2,3-DMeB and 3,4-DMeB with respect to oxidized bases. In addition, the derivatives induced a significant increase in the frequency of micronucleated cells at high doses. The antifungal and anti-trypanosomal properties of these guanylhydrazone derivatives were also evaluated, and the obtained results suggest that 2,3-DMeB is more effective than 3,4-DMeB. The biological activity of 2,3-DMeB and 3,4-DMeB may thus be related, at least in part, to their oxidative potential, as well as to their ability to interact with DNA. Considering the previously reported in vitro antitumor activity of guanylhydrazone derivatives in combination with the lack of acute toxicity and the fact that DNA damage is only observed at high doses should render both compounds good candidates for in vivo studies on antitumor activity.


Assuntos
Dano ao DNA/efeitos dos fármacos , Hidrazonas/toxicidade , Mutagênicos/toxicidade , Animais , Antifúngicos/toxicidade , Linhagem Celular , Ensaio Cometa , Cricetulus , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Mutagenicidade , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos
6.
Pharm Biol ; 54(11): 2786-2790, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27159582

RESUMO

CONTEXT: Solanum lycocarpum A. St.-Hil. (Solanaceae), popularly known as 'fruta-do-lobo' (wolf fruit), 'lobeira' and 'jurubebão', is commonly used by native people of Central Brazil in powder form or as a hydroalcoholic extract for the management of diabetes and obesity and to decrease cholesterol levels. OBJECTIVE: The present study determines the possible cytotoxic, genotoxic and antigenotoxic activities of hydroalcoholic extract of the S. lycocarpum fruits (SL). MATERIALS AND METHODS: The clonogenic efficiency assay was used to determine the cytotoxicity. Three concentrations of SL (16, 32 and 64 µg/mL) were used for the evaluation of its genotoxic and antigenotoxic potential on V79 cells using the micronucleus and comet assays. In the antigenotoxicity assays, the cells were treated simultaneously with SL and the alkylating agent methyl methanesulphonate (MMS, 44 µg/mL for the micronucleus assay and 22 µg/mL for the comet assay) as an inducer of micronuclei and DNA damage. RESULTS: The results showed that SL was cytotoxic at concentrations up to 64 µg/mL. No significant differences in the rate of chromosome or DNA damage were observed between cultures treated with SL and the control group. In addition, the frequencies of micronuclei and DNA damage induced by MMS were significantly reduced after treatment with SL. The damage reduction percentage ranged from 68.1% to 79.2% and 12.1% to 16.5% for micronucleus and comet assays, respectively. DISCUSSION AND CONCLUSION: SL exerted no genotoxic effect and exhibited chemopreventive activity against both genomic and chromosome damage induced by MMS.


Assuntos
Extratos Vegetais/farmacologia , Solanum , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Dano ao DNA , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , Testes de Mutagenicidade , Extratos Vegetais/toxicidade
7.
Chem Biodivers ; 12(7): 1105-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172330

RESUMO

Foeniculum vulgare Mill. (Apiaceae), known as fennel, is a widespread aromatic herbaceous plant, and its essential oil is used as additive in the food, pharmaceutical, cosmetic, and perfume industries. The in vitro antischistosomal activity and cytotoxic effects against V79 cells of the essential oil of F. vulgare cultivated in southeastern Brazil (FV-EO) was investigated. The FV-EO was obtained by hydrodistillation and characterized by GC-FID and GC/MS analyses. (E)-Anethole (69.8%) and limonene (22.5%) were identified as the major constituents. Its anthelmintic activity against Schistosoma mansoni was evaluated at concentrations of 10, 50, and 100 µg/ml, and it was found to be active against adult S. mansoni worms, although it was less effective than the positive control praziquantel (PZQ) in terms of separation of the coupled pairs, mortality, and decreased motor activity. However, FV-EO elicited an interesting dose-dependent reduction in the number of S. mansoni eggs. On their own, (E)-anethole and the limonene enantiomers were much less effective than FV-EO and PZQ. An XTT-cytotoxicity-based assay evidenced no FV-EO cytotoxicity against V79 cells. In summary, FV-EO displayed moderate in vitro schistosomicidal activity against adult S. mansoni worms, exerted remarkable inhibitory effects on the egg development, and was of low toxicity.


Assuntos
Anti-Helmínticos/farmacologia , Foeniculum/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/isolamento & purificação , Brasil , Linhagem Celular , Cricetinae , Relação Dose-Resposta a Droga , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
8.
Food Chem Toxicol ; 84: 55-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26190540

RESUMO

In this study, we evaluated the toxic and genotoxic potential of zinc oxide nanoparticles (ZnO NPs) of 20 nm and the mutagenic potential of these ZnO NPs as well as that of an amorphous ZnO. Toxicity was assessed by XTT colorimetric assay. ZnO NPs were toxic at concentrations equal to or higher than 240.0 µM. Genotoxicity was assessed by in vitro Cytokinesis Block Micronucleus Assay (CBMN) in V79 cells. ZnO NPs were genotoxic at 120.0 µM. The mutagenic potential of amorphous ZnO and the ZnO NPs was assayed using the wing Somatic Mutation and Recombination Test (SMART) of Drosophila melanogaster. In the Standard cross, the amorphous ZnO and ZnO NPs were not mutagenic. Nevertheless, Marker trans-heterozygous individuals from the High bioactivation cross treated with amorphous ZnO (6.25 mM) and ZnO NPs (12.50 mM) displayed a significant increased number of mutant spots when compared with the negative control. In conclusion, the results were not dose related and indicate that only higher concentrations of ZnO NPs were toxic and able to induce genotoxicity in V79 cells. The increase in mutant spots observed in D. melanogaster was generated due to mitotic recombination, rather than mutational events.


Assuntos
Nanopartículas Metálicas/toxicidade , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Animais Geneticamente Modificados , Bioensaio , Linhagem Celular , Cricetulus , Cruzamentos Genéticos , Drosophila melanogaster , Feminino , Marcadores Genéticos/efeitos dos fármacos , Perda de Heterozigosidade/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/ultraestrutura , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/química , Pigmentação/efeitos dos fármacos , Asas de Animais , Óxido de Zinco/química
9.
Ecotoxicol Environ Saf ; 114: 9-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25590379

RESUMO

The processing and combustion of coal in thermal power plants release anthropogenic chemicals into the environment. Baccharis trimera is a common plant used in folk medicine that grows readily in soils degraded by coal mining activities. This shrub bioaccumulates metals released into the environment, and thus its consumption may be harmful to health. The purpose of this study was to investigate the phytochemical profile, antioxidant capacity (DPPH), genotoxic (comet assay) and mutagenic potential (CBMN-cyt) in V79 cells of B. trimera aqueous extracts in the coal-mining region of Candiota (Bt-AEC), and in Bagé, a city that does not experience the effects of exposure to coal (Bt-AEB, a reference site). In the comet assay, only Bt-AEC was genotoxic at the highest doses (0.8mg/mL and 1.6mg/mL), compared to the control. For extracts from both areas, mutagenic effects were observed at higher concentrations compared to the control. The cell damage parameters were significantly high in both extracts; however, more striking values were observed for Bt-AEC, up to the dose of 0.8mg/mL. In chemical analysis, no variation was observed in the contents of flavonoids and phenolic compounds, neither the antioxidant activity, which may suggest that DNA damage observed in V79 cells was induced by the presence of coal contaminants absorbed by the plant.


Assuntos
Antioxidantes/farmacologia , Baccharis , Carvão Mineral/toxicidade , Dano ao DNA , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Antioxidantes/isolamento & purificação , Baccharis/química , Baccharis/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Minas de Carvão , Ensaio Cometa , Cricetinae , Cricetulus , Flavonoides/análise , Metais , Mutagênicos/isolamento & purificação , Fenóis/análise , Extratos Vegetais/isolamento & purificação , Centrais Elétricas
10.
Food Chem Toxicol ; 72: 8-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25007786

RESUMO

Salvia officinalis (sage) is a perennial woody subshrub native to the Mediterranean region that is commonly used as a condiment and as an anti-inflammatory, antioxidant and antimicrobial agent due to its biological activities. Manool is the most abundant micro-metabolite found in Salvia officinalis essential oils and extracts. We therefore decided to evaluate the cytotoxic, genotoxic and antigenotoxic potential of manool in Chinese hamster lung fibroblasts (V79) and human hepatoma cells (HepG2). Cytotoxicity was assessed by the colony-forming assay in V79 cells and toxic effects were observed at concentrations of up to 8.0 µg/mL. The micronucleus test was used to evaluate the genotoxicity and antigenotoxicity of manool in V79 and HepG2 cells at concentrations of 0.5-6.0 µg/mL and 0.5-8.0 µg/mL, respectively. For evaluation of antigenotoxicity, the concentrations of manool were combined with methyl methanesulfonate (MMS, 44 µg/mL). The results showed a significant increase in the frequency of micronuclei in cultures of both cell lines treated with the highest concentration tested, demonstrating a genotoxic effect. On the other hand, manool exhibited a protective effect against chromosome damage induced by MMS in HepG2 cells, but not in V79 cells. These data suggest that some manool metabolite may be responsible for the antigenotoxic effect observed in HepG2 cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Diterpenos/farmacologia , Metanossulfonato de Metila/toxicidade , Extratos Vegetais/farmacologia , Salvia officinalis/química , Animais , Antioxidantes/farmacologia , Linhagem Celular , Cricetinae , Cricetulus , Células Hep G2 , Humanos , Testes para Micronúcleos
11.
Artigo em Inglês | MEDLINE | ID: mdl-24561378

RESUMO

The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals.


Assuntos
Colesterol/análogos & derivados , Dano ao DNA , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênicos/toxicidade , Compostos Organosselênicos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/toxicidade , Ensaio Cometa , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Mutação da Fase de Leitura/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes para Micronúcleos , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA