Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Surg Neurol Int ; 15: 188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974550

RESUMO

Background: Vasa vasorum (VVs) is a Latin word representing vessels of vessels. VVs are usually found on the adventitia of the parent vessel and infrequently reach the media and intima, depending on the size and type of the parent vessels and physiological and pathological conditions. The VVs include arteries, capillaries, veins, and lymphatic vessels, involving the oxygenation and nourishment of the vessel's wall to sustain its healthy state. Accumulated studies have revealed that VVs are involved in various intracranial lesions, including atherosclerotic diseases, aneurysms, and shunt diseases. The current review aims to review and integrate past and recent findings and knowledge on VVs and to facilitate our understanding of VVs and intracranial pathology involving VVs. Methods: A literature review was carried out with a focus on the role of VVs by searching the Pubmed database. Results: We identified 71 articles that discuss the role of VVs. We discussed the anatomical structure, physiological significance, and pathological significance of the VV. Conclusion: VV is not only involved in the nutrition and metabolism of the vascular wall but is also deeply involved in the pathogenesis of inflammation, ischemia, and thrombosis of the vascular wall. In addition, in the central nervous system, intracranial vascular wall nutrient particularities and VVs are closely related to the pathogenesis of cerebral aneurysms, subarachnoid hemorrhage, arteriovenous shunt disease, atherosclerotic lesions, and other conditions.

2.
Biomed Pharmacother ; 176: 116870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850658

RESUMO

Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.


Assuntos
Pericitos , Pericitos/patologia , Humanos , Animais , Arteriosclerose Intracraniana/patologia , Arteriosclerose Intracraniana/fisiopatologia , Vasa Vasorum/patologia , Vasa Vasorum/fisiopatologia , Artérias Cerebrais/patologia
3.
Ultrasound Med Biol ; 50(8): 1273-1279, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796339

RESUMO

OBJECTIVE: It was previously believed that atherosclerotic (AS) plaque starts to develop from the intima and that intraplaque vasa vasorum (VV) hyperplasia promotes adventitial VV (AVV) hyperplasia. However, recent studies have shown that arterial AVV hyperplasia precedes early intimal thickening, suggesting its possible role as an initiating factor of AS. To provide further insight into this process, in this study, we examine the evolution of AAV and VV development in a preclinical model of early AS with longitudinal ultrasound imaging. METHODS: Models of early AS were established. Duplex ultrasound scanning and contrast-enhanced ultrasound were performed for diagnosis. Pearson correlation tests were used to analyze the relationships between AVV hyperplasia and VV hyperplasia, or between AVV hyperplasia and intima-media thickness (IMT). RESULTS: During 0-12 wk of high-fat feeding, AVV gradually increased and intima-media thickened gradually in the observation area; in the 2nd wk of high-fat feeding, the observation area showed obvious AVV proliferation; at the 4th wk, the intima-media membrane became thicker; at the 12th wk, early plaque formation and intraplaque VV proliferation were observed. There was a strong positive correlation between AVV proliferation and IMT thickening and a strong negative correlation between AVV proliferation and the change rate of vessel diameter. CONCLUSION: This study demonstrated that AVV proliferation in the arteries occurred earlier than IMT thickening and was positively correlated with IMT. At present, the indicators of ultrasonic diagnosis of AS, such as IMT, Intraplaque VV, Echo property, all appear in the advanced stage of AS. The AVV may be an innovative diagnostic target for the early stage of AS plaque.


Assuntos
Modelos Animais de Doenças , Hiperplasia , Placa Aterosclerótica , Vasa Vasorum , Animais , Vasa Vasorum/diagnóstico por imagem , Vasa Vasorum/patologia , Placa Aterosclerótica/diagnóstico por imagem , Coelhos , Hiperplasia/diagnóstico por imagem , Masculino , Túnica Adventícia/diagnóstico por imagem , Túnica Adventícia/patologia , Ultrassonografia/métodos
4.
Autops Case Rep ; 14: e2024491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803482

RESUMO

The vasa vasorum of the large pulmonary vessels is involved in the pathology of COVID-19. This specialized microvasculature plays a major role in the biology and pathology of the pulmonary vessel walls. We have evidence that thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels during severe COVID-19 causes ischemia and subsequent death of the pulmonary vasculature endothelium. Subsequent release of thrombi from the vasa interna into the pulmonary circulation and pulmonary embolism generated at the ischemic pulmonary vascular endothelium site, are the central pathophysiological mechanisms in COVID-19 responsible for pulmonary thromboembolism. The thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels is an internal event leading to pulmonary thromboembolism in COVID-19.

5.
Biotech Histochem ; : 1-7, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780082

RESUMO

Abdominal aortic aneurysm (AAA) is a vascular disease that involves aortic wall dilation. Cigarette smoking is an established risk factor and rupture, and nicotine may be a major contributor to the onset of AAA. In humans the condition is associated with stenosis of the vasa vasorum (VV), which may be caused by nicotine. In this study, we evaluated the effects of nicotine on VV pathology. After 4 weeks of nicotine administration to rats using an osmotic pump, the VV patency rate in the nicotine administration group was significantly lower than that in the control group. The levels of Ki-67, a cell proliferation marker, were significantly increased in the regions containing VV in the nicotine group, as were hypoxia inducible factor-α levels. Collagen levels around VV were significantly lower in the nicotine group than in the controls. Our data suggest that nicotine can cause VV stenosis by inducing abnormal proliferation of smooth muscle cells in the VV. The increased risk of AAA development due to cigarette smoking may be partially explained by nicotine-induced VV denaturation and collagen fiber degradation.

6.
Front Endocrinol (Lausanne) ; 15: 1366015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774226

RESUMO

Introduction: Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the world's population and encompasses a spectrum of liver conditions, from non-alcoholic steatohepatitis (NASH) to inflammation and fibrosis. In addition, NAFLD also links to extrahepatic conditions like diabetes or obesity. However, it remains unclear if NAFLD independently correlates with the onset and progression of atherosclerosis. Material and methods: This cross-sectional study aimed to explore the relationship between NAFLD severity, assessed via liver biopsy, and early atherosclerosis using adventitial vasa vasorum (VV) density. It included 44 patients with obesity (33 with steatosis, 11 with NASH) undergoing bariatric surgery. Results: Results revealed no significant differences in adventitial VV density between steatosis and NASH groups, neither in the mean values [0.759 ± 0.104 vs. 0.780 ± 0.043, P=0.702] nor left-right sides. Similarly, carotid intima-media thickness (cIMT) did not vary between these groups. Additionally, no linear correlation existed between VV density and cIMT. Only gender showed an association with VV density. Conclusion: These findings suggest that NASH severity doesn't independently drive early atherosclerosis or affects cIMT. Gender might play a role in early atherosclerotic disease in NAFLD, impacting VV density and cIMT. This highlights the need to consider other risk factors when evaluating cardiovascular risk in NAFLD patients.


Assuntos
Espessura Intima-Media Carotídea , Hepatopatia Gordurosa não Alcoólica , Índice de Gravidade de Doença , Vasa Vasorum , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Masculino , Feminino , Vasa Vasorum/patologia , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Túnica Adventícia/patologia , Aterosclerose/patologia , Obesidade/patologia , Obesidade/complicações
7.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L79-L85, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651234

RESUMO

The pathophysiology of pulmonary hypertension (PH) is not fully understood. Here, we tested the hypothesis that hypoxic perfusion of the vasa vasorum of the pulmonary arterial (PA) wall causes PH. Young adult pig lungs were explanted and placed into a modified ex vivo lung perfusion unit (organ care system, OCS) allowing the separate adjustment of parameters for mechanical ventilation, as well as PA perfusion and bronchial arterial (BA) perfusion. The PA vasa vasorum are branches of the BA. The lungs were used either as the control group (n = 3) or the intervention group (n = 8). The protocol for the intervention group was as follows: normoxic ventilation and perfusion (steady state), hypoxic BA perfusion, steady state, and hypoxic BA perfusion. During hypoxic BA perfusion, ventilation and PA perfusion maintained normal. Control lungs were kept under steady-state conditions for 105 min. During the experiments, PA pressure (PAP) and blood gas analysis were frequently monitored. Hypoxic perfusion of the BA resulted in an increase in systolic and mean PAP, a reaction that was reversible upon normoxic BA perfusion. The PAP increase was reproducible during the second hypoxic BA perfusion. Under control conditions, the PAP stayed constant until about 80 min of the experiment. In conclusion, the results of the current study prove that hypoxic perfusion of the vasa vasorum of the PA directly increases PAP in an ex situ lung perfusion setup, suggesting that PA vasa vasorum function and wall ischemia may contribute to the development of PH.NEW & NOTEWORTHY Hypoxic perfusion of the vasa vasorum of the pulmonary artery directly increased pulmonary arterial pressure in an ex vivo lung perfusion setup. This suggests that the function of pulmonary arterial vasa vasorum and wall ischemia may contribute to the development of pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipóxia , Perfusão , Artéria Pulmonar , Vasa Vasorum , Animais , Vasa Vasorum/patologia , Vasa Vasorum/fisiopatologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Suínos , Hipóxia/fisiopatologia , Hipóxia/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Pressão Arterial , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/fisiopatologia , Artérias Brônquicas/patologia , Artérias Brônquicas/fisiopatologia , Feminino
8.
Vasc Med ; 29(3): 296-301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488572

RESUMO

Introduction: Takayasu arteritis (TA) is associated with microvascularization of the wall of large arteries and is related to inflammation. Ultrasound localization microscopy (ULM), combining ultrafast ultrasound imaging with microbubble (MB) injection, can track the path of MBs within the arterial wall and thus provide imaging of the vasa vasorum. From the analysis of MB tracks in the common carotid arteries of patients with active TA, we report the presence of microvessels in connection with the carotid lumen (i.e., vasa vasorum interna [VVI]). Methods: ULM maps were obtained on five patients with active disease in the observational single-center series of the TAK-UF study. MB tracks connected to the carotid lumen were automatically identified, allowing the reconstruction of VVI. Results: MB tracking allows us to observe a microvascular network on the inner part of the wall, with some vessels in communication with the carotid lumen. This type of vessel was identified in all patients with active TA (n = 5) with a median of 2.2 [1.1-3.0] vessels per acquisition (2D longitudinal view of 3 cm of the common carotid artery). The blood flow within these vessels is mainly centrifugal; that is, toward the adventitia (88% [54-100] of MB tracks with flow directed to the outer part of the wall). Conclusion: VVI are present in humans in the case of active TA and emphasize the involvement of the intima in the pathological process. ClinicalTrials.gov Identifier: NCT03956394.


Assuntos
Microbolhas , Valor Preditivo dos Testes , Arterite de Takayasu , Vasa Vasorum , Humanos , Vasa Vasorum/diagnóstico por imagem , Vasa Vasorum/patologia , Arterite de Takayasu/diagnóstico por imagem , Feminino , Adulto , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/patologia , Masculino , Meios de Contraste , Microcirculação , Microscopia Acústica , Pessoa de Meia-Idade , Microvasos/diagnóstico por imagem , Microvasos/patologia , Adulto Jovem
9.
J Cardiothorac Surg ; 19(1): 134, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491494

RESUMO

BACKGROUND: Morphologically, the risk of aortic aneurysm rupture is mainly evaluated based on its type (e.g., fusiform or saccular) and diameter. Based on the finite element analysis, peak wall stress has been identified as a more sensitive and specific predictor of rupture in recent years. Moreover, in finite analysis, the neck of aneurysm is the highest peak wall stress and is associated with the rupture point. CASE PRESENTATION: A saccular aortic aneurysm (84 mm) was incidentally detected during preoperative examination for chronic empyema in a 74-year-old male patient with a history of polycythemia. Aortic arch graft replacement using an open stent was performed. CONCLUSIONS: Morphologically, this case was associated with a very high risk of rupture; nevertheless, it did not rupture. In this case, a mural thrombus (likely formed due to polycythemia) covered the neck of aneurysm that is experiencing the highest peak wall stress and is associated with the rupture point. The mural thrombus decreased peak wall stress and could reduce the risk of rupture even for huge saccular aneurysms. Furthermore, the mural thrombus was fully occupied in aneurysms, such as during coil embolization. Thus, polycythemia could decrease the risk of rupture of huge saccular aneurysms.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Ruptura Aórtica , Policitemia , Tromboembolia , Trombose , Masculino , Humanos , Idoso , Policitemia/complicações , Aneurisma Aórtico/complicações , Ruptura Aórtica/complicações , Trombose/complicações , Trombose/cirurgia , Tromboembolia/complicações , Aneurisma da Aorta Abdominal/complicações
10.
Ultrasound Med Biol ; 50(5): 712-721, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365464

RESUMO

OBJECTIVE: Arterial adventitial vasa vasorum (AVV) plays an important role in the occurrence and development of atherosclerotic (AS) disease. AS is a systemic disease, and plaque is not only a local vascular event, but also occurs at multiple sites throughout the vascular bed. Currently, effective anti-AVV therapies are lacking. Therefore, we posed the following scientific questions: "does human carotid adventitial vasa vasorum density reflect plaque neovascularization and intimal-media hyperplasia in carotid?"; and "is it possible to reduce human AVV density by sonodynamic therapy (SDT)?" METHODS: A retrospective study was conducted on 160 patients with carotid atherosclerosis. Duplex ultrasound scanning (DUS), contrast-enhanced ultrasound (CEUS), coronary angiography, and coronary CT angiography (CTA) were used for diagnosis and screening. Pearson correlation tests and Receiver operating characteristic (ROC) curve were used to analyze the relationships between AVV hyperplasia, vasa vasorum (VV) hyperplasia and the intima-media thickness (IMT). SDT was developed for the treatment of arterial AVV hyperplasia and AS plaques. RESULTS: The presence of local AVV in carotid unstable plaques correlated with the echogenic properties of the carotid plaque and the extent of plaque progression; Furthermore local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with acute coronary syndrome (ACS) events; Local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with coronary artery stenosis. Notably, SDT reduced local AVV hyperplasia and shrank the plaques in human femoral and carotid atherosclerotic lesions. CONCLUSIONS: The presence of AVV in human carotid arteries reflects the severity of carotid and coronary artery AS. Further, SDT can reduce the hyperplasia of local AVV in human femoral and carotid plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Estudos Retrospectivos , Vasa Vasorum/diagnóstico por imagem , Hiperplasia/patologia , Espessura Intima-Media Carotídea , Meios de Contraste
11.
J Neurosurg Case Lessons ; 7(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190660

RESUMO

BACKGROUND: Extracranial internal carotid artery aneurysms (EICAs) are rare. Although a high mortality risk has been reported in nonoperated cases, the optimal treatment for EICAs remains unknown. OBSERVATIONS: A 79-year-old female presented with painless swelling in the right neck. Imaging revealed a giant EICA with a maximum diameter of 3.2 cm. Superficial temporal artery-middle cerebral artery bypass and internal carotid artery (ICA) trapping were performed. Because the distal aneurysm edge was at the C1 level, the distal portion of the aneurysm was occluded by endovascular coiling, and the proximal portion was surgically ligated. Blood flow into the aneurysm disappeared after the operation. Three years postsurgery, enlargement of the aneurysm with blood flow from the ascending pharyngeal artery (APA) was detected. The EICA was resected after coiling the APA and ligating both ends of the aneurysm. Pathologically, neovascularization within the aneurysm wall was observed. LESSONS: Even if blood flow into an EICA disappears after ICA trapping, the EICAs can enlarge due to neovascularization from the neighboring artery. From the outset, removal of the aneurysm should be considered as a radical treatment strategy for giant EICAs.

12.
Autops. Case Rep ; 14: e2024491, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557157

RESUMO

ABSTRACT The vasa vasorum of the large pulmonary vessels is involved in the pathology of COVID-19. This specialized microvasculature plays a major role in the biology and pathology of the pulmonary vessel walls. We have evidence that thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels during severe COVID-19 causes ischemia and subsequent death of the pulmonary vasculature endothelium. Subsequent release of thrombi from the vasa interna into the pulmonary circulation and pulmonary embolism generated at the ischemic pulmonary vascular endothelium site, are the central pathophysiological mechanisms in COVID-19 responsible for pulmonary thromboembolism. The thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels is an internal event leading to pulmonary thromboembolism in COVID-19.

13.
J Clin Med ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068489

RESUMO

A warning sign for impending cardiovascular events is not fully established. In the process of plaque rupture, the formation of vulnerable plaque is important, and oxidized cholesterols play an important role in its progression. Furthermore, the significance of vasa vasorum penetrating the medial smooth muscle layer and being rich in atheromatous lesions should be noted. The cardio-ankle vascular index (CAVI) is a new arterial stiffness index of the arterial tree from the origin of the aorta to the ankle. The CAVI reflects functional stiffness, in addition to structural stiffness. The rapid rise in the CAVI means medial smooth muscle cell contraction and strangling vasa vasorum. A rapid rise in the CAVI in people after a big earthquake, following a high frequency of cardiovascular events has been reported. There are several cases that showed a rapid rise in the CAVI a few weeks or months before suffering cardiovascular events. To explain these sequences of events, we proposed a hypothesis: a rapid rise in the CAVI means medial smooth muscle contraction, strangling vasa vasorum, leading to ischemia and the necrosis of vulnerable plaque, and then the plaque ruptures. In individuals having a high CAVI, further rapid rise in the CAVI might be a warning sign for impending cardiovascular events. In such cases, treatments to decrease the CAVI better be taken soon.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38000693

RESUMO

OBJECTIVE: The pre-collecting and collecting lymph vessels have smooth muscle cells, and sufficient perfusion is vital to maintain their function. Although the vasa vasorum of the collecting lymph vessels (VVCL) have been histologically investigated, little is known about their physiology. This study aimed to investigate the relationship between morphology and blood flow of the VVCL in lymphoedematous limbs. METHODS: Medical records of lower extremity lymphoedema patients who underwent video capillaroscopy observation during supermicrosurgical lymphaticovenous anastomosis (LVA) surgery were reviewed. The collecting lymph vessels, dissected for LVA, were examined under video capillaroscopy (GOKO Bscan-ZD, GOKO Imaging Devices Co., Japan) with a magnification of 175x and 620x. Blood flow velocity of the VVCL was calculated by measuring the red blood cell movement using software (GOKO-VIP ver. 1.0.0.4, GOKO Imaging Devices Co., Japan). Based on the video capillaroscopy findings, the VVCL were grouped according to their morphology; the VVCL morphology types and blood flow velocity were then compared according to the lymphosclerosis severity grade. RESULTS: Sixty-seven lymph vessels in 20 lower extremity lymphoedema patients were evaluated, including s0 in 19 (28.4%), s1 in 34 (50.7%), s2 in 10 (14.9%), and s3 in four (6.0%) lymph vessels. The VVCLs were grouped into four types: type 1 (n = 4), type 2 (n = 37), type 3 (n = 19), and type 4 (n = 7). Blood flow velocity of the VVCL ranged 0 - 189.3 µm/sec (average 26.40 µm/sec). There were statistically significant differences in VVCL morphology (p < .001) and blood flow velocity (p < .001) according to lymphosclerotic severity. CONCLUSION: Vasa vasorum of the collecting lymph vessels could be grouped into four types with different characteristics. Morphological and physiological changes of the VVCL were related to sclerotic changes of the collecting lymph vessels.

15.
Comput Struct Biotechnol J ; 21: 4859-4867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860230

RESUMO

The mechanisms of abdominal aortic aneurysm (AAA) formation and rupture are controversial in the literature. While the intraluminal thrombus (ILT) plays a crucial role in reducing oxygen flux to the tissue and therefore decreasing the aortic wall strength, other physiological parameters such as the vasa vasorum (VV) oxygen flow and its consumption contribute to altered oxygenation responses of the arterial tissue as well. The goal of this research is to analyse the importance of the aforementioned parameters on oxygen delivery to the aneurysmal wall in a patient-specific AAA. Numerical simulations of coupled blood flow and mass transport with varying levels of VV concentration and oxygen reaction rate coefficient are performed. The hypoperfusion of the adventitial VV and high oxygen consumption are observed to have critical effects on reducing aneurysmal tissue oxygen supply and can therefore exacerbate localized oxygen deprivation.

16.
Braz J Cardiovasc Surg ; 38(6): e20230045, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37797088

RESUMO

This short article discusses selected scanning electron microscope and transmission electron microscope features of vasa vasorum including pericytes and basement membrane of the human saphenous vein (SV) harvested with either conventional (CON) or no-touch (NT) technique for coronary artery bypass grafting. Scanning electron microscope data shows the general damage to vasa vasorum of CON-SV, while the transmission electron microscope data presents ultrastructural features of the vasa in more detail. Hence there are some features suggesting pericyte involvement in the contraction of vasa blood vessels, particularly in CON-SV. Other features associated with the vasa vasorum of both CON-SV and NT-SV preparations include thickened and/or multiplied layers of the basement membrane. In some cases, multiple layers of basement membrane embrace both pericyte and vasa microvessel making an impression of a "unit" made by basement membrane-pericyte-endothelium/microvessel. It can be speculated that this structural arrangement has an effect on the contractile and/or relaxing properties of the vessels involved. Endothelial colocalization of immunoreactive inducible nitric oxide synthase and endothelin-1 can be observed (with laser confocal microscope) in some of the vasa microvessels. It can be speculated that this phenomenon, particularly of the expression of inducible nitric oxide synthase, might be related to structurally changed vasa vessels, e.g., with expanded basement membrane. Fine physiological relationships between vasa vasorum endothelium, basement membrane, pericyte, and perivascular nerves have yet to be uncovered in the detail needed for better understanding of the cells'specific effects in SV preparations for coronary artery bypass grafting.


Assuntos
Veia Safena , Vasa Vasorum , Humanos , Veia Safena/transplante , Óxido Nítrico Sintase Tipo II/metabolismo , Vasa Vasorum/metabolismo , Vasa Vasorum/ultraestrutura , Ponte de Artéria Coronária/métodos , Endotélio Vascular
17.
Vascul Pharmacol ; 153: 107234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741354

RESUMO

Recently, the importance has emerged of ischemia with no obstructive coronary artery disease (INOCA), for which endothelial and vascular smooth muscle cell (VSMC) dysfunctions and alterations in coronary vasa vasorum are involved. Regarding endothelial vasodilator functions, both endothelium-derived nitric oxide and endothelium-derived hyperpolarizing factor play important roles in modulating vascular tone, especially in the microcirculation. Recent studies have suggested systemic endothelial dysfunction in INOCA. Regarding VSMC dysfunction, Rho-kinase has been identified as a key molecular mechanism of VSMC hyperconstriction in INOCA. Finally, recent advances of coronary imaging have demonstrated the important role of altered adventitial vasa vasorum functions in INOCA.


Assuntos
Doença da Artéria Coronariana , Humanos , Vasa Vasorum , Endotélio , Isquemia , Vasos Coronários
18.
Biomech Model Mechanobiol ; 22(6): 2097-2116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37552344

RESUMO

This paper presents a mathematical model for arterial dissection based on a novel hypothesis proposed by a surgeon, Axel Haverich, see Haverich (Circulation 135(3):205-207, 2017. https://doi.org/10.1161/circulationaha.116.025407 ). In an attempt and based on clinical observations, he explained how three different arterial diseases, namely atherosclerosis, aneurysm and dissection have the same root in malfunctioning Vasa Vasorums (VVs) which are micro capillaries responsible for artery wall nourishment. The authors already proposed a mathematical framework for the modeling of atherosclerosis which is the thickening of the artery walls due to an inflammatory response to VVs dysfunction. A multiphysics model based on a phase-field approach coupled with mechanical deformation was proposed for this purpose. The kinematics of mechanical deformation was described using finite strain theory. The entire model is three-dimensional and fully based on a macroscopic continuum description. The objective here is to extend that model by incorporating a damage mechanism in order to capture the tearing (rupture) in the artery wall as a result of micro-injuries in VV. Unlike the existing damage-based model of the dissection in the literature, here the damage is driven by the internal bleeding (hematoma) rather than purely mechanical external loading. The numerical implementation is carried out using finite element method (FEM).


Assuntos
Dissecção Aórtica , Aterosclerose , Dissecção de Vasos Sanguíneos , Masculino , Humanos , Artérias , Modelos Cardiovasculares
19.
J Clin Med ; 12(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240684

RESUMO

It is known that vasa vasorum contributes substantially to the blood supply and nutrition of one-third of the wall of the ascending thoracic aorta. Therefore, we focused on studying the relationship between inflammatory cells and vasa vasorum vessels in patients with aortic aneurysm. The material for the study was biopsies of thoracic aortic aneurysms taken from patients during an aneurysmectomy (34 men, 14 women, aged 33 to 79 years). The biopsies belonged to patients with non-hereditary thoracic aortic aneurysm. An immunohistochemical study was carried out using antibodies to antigens of T cells (CD3, CD4, CD8); macrophages (CD68); B cells (CD20); endothelium (CD31, CD34, von Willebrand factor (vWF)); and smooth muscle cells (alpha actin). Samples without inflammatory infiltrates contained less vasa vasorum in the tunica adventitia than samples with inflammatory infiltrates, and this difference was statistically significant p < 0.05. T cell infiltrates in the adventitia of aortic aneurysms were found in 28 of 48 patients. In the vessels of the vasa vasorum, surrounded by inflammatory infiltrates, T cells that adhered to the endothelium were found. The same cells were also localized in the subendothelial area. The number of adherent T cells in patients with inflammatory infiltrates in the aortic wall dominated the number of these cells in patients without inflammation of the aortic wall. This difference was statistically significant, p < 0.0006. Hypertrophy and sclerosis of the arteries of the vasa vasorum system, the narrowing of their lumen, and, as a result, impaired blood supply to the aortic wall, were found in 34 patients with hypertension. In 18 patients (both in patients with hypertension and in patients without hypertension), T cells that adhered to the vasa vasorum endothelium were found. In nine cases, massive infiltrates of T cells and macrophages were found, which surrounded and squeezed the vasa vasorum, preventing blood circulation. In six patients, parietal and obturating blood clots were found in the vasa vasorum vessels, which disrupted the normal blood supply to the aortic wall. We believe that this indicates the importance of the state of the vessels of the vasa vasorum in the development of an aortic aneurysm. In addition, pathological changes in these vessels may not always play a primary role, but always a very important role, in the pathogenesis of this disease.

20.
J Med Imaging (Bellingham) ; 10(1): 016001, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36778671

RESUMO

Purpose: The onset of atherosclerosis is preceded by changes in blood perfusion within the arterial wall due to localized proliferation of the vasa vasorum. The purpose of this study was to quantify these changes in spatial density of the vasa vasorum using a research whole-body photon-counting detector CT (PCD-CT) scanner and a porcine model. Approach: Vasa vasorum angiogenesis was stimulated in the left carotid artery wall of anesthetized pigs ( n = 5 ) while the right carotid served as a control. After a 6-week recovery period, the animals were scanned on the PCD-CT prior to and after injection of iodinated contrast. Annular regions of interest were used to measure wall enhancement in the injured and control arteries. The exact Wilcoxon-signed rank test was used to determine whether a significant difference in contrast enhancement existed between the injured and control arterial walls. Results: The greatest arterial wall enhancement was observed following contrast recirculation. The wall enhancement measurements made over these time points revealed that the enhancement was greater in the injured artery for 13/16 scanned arterial regions. Using an exact Wilcoxon-signed rank test, a significantly increased enhancement ratio was found in injured arteries compared with control arteries ( p = 0.013 ). Vasa vasorum angiogenesis was confirmed in micro-CT scans of excised arteries. Conclusions: Whole-body PCD-CT scanners can be used to detect and quantify the increased perfusion occurring within the porcine carotid arterial wall resulting from an increased density of vasa vasorum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...