Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biosens Bioelectron ; 250: 116048, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266618

RESUMO

Real-time monitoring of nitric oxide (NO) is of great importance in diagnosing the physiological functions of neurotransmission, cardiovascular, and immune systems. This study reports the carbon nanotube-interconnected ruthenium phthalocyanine nanoparticle nanocomposite and its applicability in construction of an electrochemical platform, which could real-time detect NO released from the vascular endothelial barrier (VEB) model in cell culture medium. The nanocomposite exhibits regular morphology, uniform particle size, and excellent electro-catalytic activity to electrochemical oxidation of NO. Under optimal conditions, the electrochemical device has high sensitivity (0.871 µA µM-1) and can selectively detect NO down to the concentration of 6 × 10-10 M. The human brain microvascular endothelial cells were cultured onto the Transwell support to construct the VEB model. Upon stimulated by L-arginine, NO produced by the VEB diffuses into the bottom chamber of the Transwell, and is real-time monitored by the electrochemical device. Moreover, evaluation of the NO inhibition by drug is realized using the electrochemical device-Transwell platform. This simple and sensitive platform would be of great interesting for evaluating the endothelial function or its pathological states, and screening the related drugs or chemicals.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanotubos de Carbono , Compostos Organometálicos , Humanos , Técnicas Eletroquímicas , Óxido Nítrico , Células Endoteliais
2.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37397979

RESUMO

Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown. In a left-lung hilar ligation model of IRI in mice, we found that lung IR increases the efflux of extracellular ATP (eATP) through pannexin 1 (Panx1) channels at the EC membrane. Elevated eATP activated elementary Ca2+ influx signals through endothelial TRPV4 channels through purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro surrogate models of lung IR. Endothelium-specific deletion of P2Y2R, TRPV4, and Panx1 in mice had substantial protective effects against lung IR-induced activation of endothelial TRPV4 channels, lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a novel mediator of lung edema, inflammation, and dysfunction after IR, and show that disruption of endothelial Panx1-P2Y2R-TRPV4 signaling pathway could represent a promising therapeutic strategy for preventing lung IRI after transplantation.

3.
Int J Biol Sci ; 18(5): 2163-2180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342333

RESUMO

Background: TET1 has been implicated in regulating inflammation and cardiovascular disease, but a newly discovered short isoform of TET1 (termed TET1s) exhibits higher expression in adult tissues than full-length TET1. However, the precise role of TET1 in cardiovascular disease remains undefined. Methods and Results: Based on TET1-/- knockout mice (with deletion of both TET1 and TET1s ) and TET1cs/cs mice (with deletion of only TET1), we found that TET1s deletion in TET1-/- mice resulted in more serious atherosclerotic lesions in the whole aorta than TET1cs/cs in the ApoE-/- background mice fed a high-fat diet. Atherosclerotic lesions with Oil red staining were dramatically localized in the aortic arch, abdominal aorta and ligated LCA, where they were exposed to OSS. Furthermore, the OSS-induced depression of TET1s in vitro and in vivo increased inflammatory cell and red blood cell infiltration into the subendothelial layer by impairing the vascular intimal barrier. TET1s upregulation enhanced vascular endothelial barrier function by increasing gap protein connexin 40 (CX40) expression as measured by RNA-seq and was confirmed by CX40 knockdown. TET1s interaction with Sin3a increased the global and CX40 promoter histone H3K27 acetylation levels, but not DNA methylation, to induce CX40 expression. Conclusions: These data demonstrate the unexpected discovery that laminar shear stress induces TET1s expression to protect the vascular endothelial barrier by increasing CX40 expression in ECs and that TET1s overexpression may be the core step for OSS-induced atherosclerosis therapy.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Estresse Mecânico
4.
Ann Transl Med ; 10(24): 1377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660643

RESUMO

Background: Vascular endothelial barrier disruption is pivotal in the development of acute and chronic pain. Here, we demonstrate a previously unidentified molecular mechanism in which activation of the peripheral Epac1/p-Cav-1 pathway accelerated the disruption of the vascular endothelial barrier, thereby promoting chronic postsurgical pain (CPSP). Methods: We established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR). Pain behaviors were assessed by the mechanical withdrawal threshold (MWT) at different times. Local muscle tissues around the incision were isolated to detect the vascular permeability and the expression of Epac1 and Cav-1. They were assessed by western blot and immunofluorescence staining. Results: SMIR increased vascular endothelial permeability and the number of macrophages and endothelial cells in the muscle tissues around the incision. The peripheral upregulation of Epac1 was macrophage-derived, whereas that of p-Cav-1 was both macrophage and endothelial cell-derived in the SMIR model. Moreover, the Epac1 agonist 8-pCPT could induce mechanical sensitivity, increase the expression of p-Cav-1, and disrupt vascular endothelial barrier in normal rats. The Epac1 inhibitor CE3F4 attenuated established SMIR-induced mechanical hyperalgesia, the upregulation of p-Cav-1 and vascular endothelial barrier. Finally, we showed that intrathecal injection of Cav-1siRNA relieved SMIR-induced mechanical allodynia, but had no effects of the expression of Epac1. Conclusions: Collectively, these results revealed a molecular mechanism for modulating CPSP through the peripheral Epac1/Cav-1 pathway. Importantly, targeting Epac1/Cav-1 signaling might be a potential treatment for CPSP.

5.
Front Cell Dev Biol ; 9: 636327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777946

RESUMO

The damage of vascular endothelial barrier function induced by sepsis is critical in causing multiple organ dysfunctions. Previous studies showed that dexmedetomidine (Dex) played a vital role in protecting organ functions. However, whether Dex participates in protecting vascular leakage of sepsis and the associated underlying mechanism remains unknown yet. We used cecal ligation and puncture induced septic rats and lipopolysaccharide stimulated vascular endothelial cells (VECs) to establish models in vivo and in vitro, then the protective effects of Dex on the vascular endothelial barrier function of sepsis were observed, meanwhile, related mechanisms on regulating mitochondrial fission were further studied. The results showed that Dex could significantly reduce the permeability of pulmonary veins and mesenteric vessels, increase the expression of intercellular junction proteins, enhance the transendothelial electrical resistance and decrease the transmittance of VECs, accordingly protected organ functions and prolonged survival time in septic rats. Besides, the mitochondria of VECs were excessive division after sepsis, while Dex could significantly inhibit the mitochondrial fission and protect mitochondrial function by restoring mitochondrial morphology of VECs. Furthermore, the results showed that ER-MITO contact sites of VECs were notably increased after sepsis. Nevertheless, Dex reduced ER-MITO contact sites by regulating the polymerization of actin via α2 receptors. The results also found that Dex could induce the phosphorylation of the dynamin-related protein 1 through down-regulating extracellular signal-regulated kinase1/2, thus playing a role in the regulation of mitochondrial division. In conclusion, Dex has a protective effect on the vascular endothelial barrier function of septic rats. The mechanism is mainly related to the regulation of Drp1 phosphorylation of VECs, inhibition of mitochondrial division by ER-MITO contacts, and protection of mitochondrial function.

6.
Cell Commun Signal ; 19(1): 17, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588881

RESUMO

BACKGROUND: Vascular endothelial barrier function is maintained by cell-to-cell junctional proteins and contributes to vascular homeostasis. Various risk factors such as inflammation disrupt barrier function through down-regulation of these proteins and promote vascular diseases such as atherosclerosis. Previous studies have demonstrated that aged garlic extract (AGE) and its sulfur-containing constituents exert the protective effects against several vascular diseases such as atherosclerosis. In this study, we examined whether AGE and its sulfur-containing constituents improve the endothelial barrier dysfunction elicited by a pro-inflammatory cytokine, Tumor-necrosis factor-α (TNF-α), and explored their mode of action on TNF-α signaling pathway. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with test substances in the presence of TNF-α for various time periods. The endothelial permeability was measured by using a transwell permeability assay. The localization of cell-to-cell junctional proteins and actin cytoskeletons were visualized by immunostaining. RhoA and Rac activities were assessed by using GTP-binding protein pulldown assay. Gene and protein expression levels of signaling molecules were analyzed by real-time PCR and western blotting, respectively. RESULTS: We found that AGE and its major sulfur-containing constituent, S-1-propenylcysteine (S1PC), reduced hyperpermeability elicited by TNF-α in HUVECs. In addition, S1PC inhibited TNF-α-induced production of myosin light chain (MLC) kinase and inactivation of MLC phosphatase through the suppression of the Rac and RhoA signaling pathways, respectively, which resulted in the dephosphorylation of MLC2, a key factor of actin remodeling. Moreover, S1PC inhibited the phosphorylation and activation of guanine nucleotide exchange factor-H1 (GEF-H1), a common upstream key molecule and activator of Rac and RhoA. These effects of S1PC were accompanied by its ability to prevent the disruption of junctional proteins on the cell-cell contact regions and the increase of actin stress fibers induced by TNF-α. CONCLUSIONS: The present study suggested that AGE and its major constituent, S1PC, improve endothelial barrier disruption through the protection of junctional proteins on plasma membrane. Video abstract.


Assuntos
Cisteína/análogos & derivados , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator de Necrose Tumoral alfa , Permeabilidade Capilar/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Chinese Critical Care Medicine ; (12): 346-349, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-753967

RESUMO

Objective To investigate the protective effect of protein kinase C (PKC) inhibitor rottlerin on rat renal vascular endothelial injury induced by lipopolysaccharide (LPS). Methods Rat renal microvascular endothelial cells cultured for 3-6 generations were divided into three groups according to random number table: blank control group in which cells were not challenged, LPS group in which cells were only stimulated by LPS 10 mg/L for 24 hours, and PKC inhibitor group in which cells were treated with PKC inhibitor rottlerin 2 μmol/L 30 minutes before LPS stimulation. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL-1β, IL-8) were determined by enzyme-linked immunosorbent assay (ELISA). Monolayer permeability was determined by Transwell assay. The expressions of PKC, RhoA and vascular endothelial-cadherin (VE-cadherin) were detected by Western Blot. The morphological characteristic and distribution of F-actin was measured by laser confocal fluorescence microscope. Results Compared with blank control group, the levels of inflammatory cytokines at 24 hours after 10 mg/L LPS stimulation were significantly increased in LPS group [TNF-α (ng/L): 397.3±25.4 vs. 46.8±8.9, IL-1β(ng/L): 76.7±11.2 vs. 12.6±3.2, IL-8 (ng/L): 574.5±31.4 vs. 73.2±9.6, all P < 0.05], the permeability of endothelial cells was significantly increased (A value: 1.32±0.03 vs. 0.36±0.02, P < 0.05), while the expressions of PKC and RhoA were significantly up-regulated (PKC/β-actin: 0.88±0.02 vs. 0.61±0.03, RhoA/β-actin: 0.96±0.01 vs. 0.49±0.03, both P < 0.05), VE-cadherin expression was significantly down-regulated (VE-cadherin/β-actin: 0.51±0.01 vs. 0.72±0.04, P < 0.05), and the F-actin distribution disorder had obvious stress fiber formation. Compared with LPS group, the levels of inflammatory cytokines were significantly lowered in PKC inhibitor group [TNF-α (ng/L): 127.4±14.6 vs. 397.3±25.4, IL-1β(ng/L): 43.2±7.8 vs. 76.7±11.2, IL-8 (ng/L): 212.7±18.2 vs. 574.5±31.4, all P < 0.05], the permeability of endothelial cells was significantly decreased (A value: 0.81±0.02 vs. 1.32±0.03, P < 0.05), the expressions of PKC and RhoA were significantly down-regulated (PKC/β-actin: 0.44±0.03 vs. 0.88±0.02, RhoA/β-actin: 0.63±0.05 vs. 0.96±0.01, both P < 0.05), the VE-cadherin expression was significantly up-regulated (VE-cadherin/β-actin: 0.69±0.03 vs. 0.51±0.01, P < 0.05), and the F-actin remodeling and stress fiber formation were significantly reduced. Conclusion PKC inhibitor could significantly attenuate the damage of vascular endothelial barrier induced by LPS, and plays an important role in endothelial cell barrier.

8.
Front Pharmacol ; 9: 1235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429788

RESUMO

Ulcerative colitis (UC), with a long course and repeated attack, severely affects patient's life quality and increases economic burden all over the world. However, the concrete causes and mechanisms of UC are still unclear, but it is generally considered that many factors participate in this process. Qingchang Suppository (QCS) has been used in treating rectitis and colitis for about 30 years in Shanghai, China. Its satisfactory clinical effects have been proved. The aim of this study is to investigate the effect and mechanisms of QCS on colonic vascular endothelial barrier in dextran sulfate sodium (DSS)-induced colitis. The results indicated that increased vascular permeability (VP) appeared earlier than increased intestinal epithelial permeability (EP) in the process of DSS-induced colitis. QCS attenuated colonic tissue edema, vascular congestion and inflammatory cell infiltration. QCS inhibited the elevation of MPO, TNF-α, and IL-6 levels in colon tissues and alleviated the microvascular damage induced by DSS. QCS also improved colonic hypoxia and decreased the expression of VEGF, HIF-1α, and iNOS. These results revealed that QCS can reduce colonic VP and can improve vascular endothelial barrier function maybe by regulating the VEGF/HIF-1α signaling pathway.

9.
J Allergy Clin Immunol ; 142(4): 1159-1172.e5, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29157947

RESUMO

BACKGROUND: Severe IgE-mediated, food-induced anaphylactic reactions are characterized by pulmonary venous vasodilatation and fluid extravasation, which are thought to lead to the life-threatening anaphylactic phenotype. The underlying immunologic and cellular processes involved in driving fluid extravasation and the severe anaphylactic phenotype are not fully elucidated. OBJECTIVE: We sought to define the interaction and requirement of IL-4 and vascular endothelial (VE) IL-4 receptor α chain (IL-4Rα) signaling in histamine-abelson murine leukemia viral oncogene homology 1 (ABL1)-mediated VE dysfunction and fluid extravasation in the severity of IgE-mediated anaphylactic reactions in mice. METHODS: Mice deficient in VE IL-4Rα and models of passive and active oral antigen- and IgE-induced anaphylaxis were used to define the requirements of the VE IL-4Rα and ABL1 pathway in severe anaphylactic reactions. The human VE cell line (EA.hy926 cells) and pharmacologic (imatinib) and genetic (short hairpin RNA knockdown of IL4RA and ABL1) approaches were used to define the requirement of this pathway in VE barrier dysfunction. RESULTS: IL-4 exacerbation of histamine-induced hypovolemic shock in mice was dependent on VE expression of IL-4Rα. IL-4- and histamine-induced ABL1 activation in human VE cells and VE barrier dysfunction was ABL1-dependent. Development of severe IgE-mediated hypovolemia and shock required VE-restricted ABL1 expression. Treatment of mice with a history of food-induced anaphylaxis with the ABL kinase inhibitor imatinib protected the mice from severe IgE-mediated anaphylaxis. CONCLUSION: IL-4 amplifies IgE- and histamine-induced VE dysfunction, fluid extravasation, and the severity of anaphylaxis through a VE IL-4Rα/ABL1-dependent mechanism. These studies implicate an important contribution by the VE compartment in the severity of anaphylaxis and identify a new pathway for therapeutic intervention of IgE-mediated reactions.


Assuntos
Anafilaxia/imunologia , Endotélio Vascular/imunologia , Imunoglobulina E/imunologia , Interleucina-4/administração & dosagem , Proteínas Proto-Oncogênicas c-abl/imunologia , Receptores de Interleucina-4/imunologia , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Anticorpos/administração & dosagem , Linhagem Celular , Feminino , Histamina/administração & dosagem , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Receptores de Interleucina-4/genética , Choque/imunologia
10.
Environ Toxicol Pharmacol ; 52: 62-68, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28376378

RESUMO

The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/efeitos dos fármacos , Herbicidas/toxicidade , Paraquat/toxicidade , Quinases da Família src/antagonistas & inibidores , Acetilcisteína/farmacologia , Proteína Tirosina Quinase CSK , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Quinases da Família src/metabolismo
11.
Biomed Pharmacother ; 84: 714-721, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27710895

RESUMO

BACKGROUND: Recent evidence suggests that CD200 fusion protein (CD200Fc), a CD200R1 agonist may attenuate inflammatory responses in autoimmune diseases and neuro-degeneration. While, little is known about the function of CD200Fc in cigarette smoke extract (CSE)-induced mouse Cardiac Microvascular Endothelial Cells (mCMECs). The present study was designed to elucidate the effects of CD200Fc on CSE-induced vascular endothelial barrier (VEB) dysfunction and inflammatory responses, which is a highly clinically relevant model of smoking related cardiovascular diseases. METHODS: mCMECs were pre-treated with 1, 10 and 100µg/ml CD200Fc for 24h respectively, and then treated with 250µg/ml CSE for different times (24h or 120min). The transepithelial electrical resistance (TEER) and transport of fluorescent markers were used to measure VEB function in CSE-induced mCMECs. Western blot and immunofluorescent staining analysis were used to detect the expression of tight junction proteins, such as Zona Occludens-1 (ZO-1) and Claudin-1 in CSE-induced mCMECs. We measured the expression of pro-inflammatory cytokines in CSE-induced mCMECs by using ELISA and RT-PCR. In addition, the NF-κB activity in CSE-induced mCMECs were investigated by using nuclear/cytosol fractionation and western blot analysis. RESULTS: In vitro treatment with CSE increased the transport of fluorescent markers and decreased TEER levels in mCMECs, respectively, which were attenuated by CD200Fc (10 and 100µg/ml) pretreatment. The CSE-induced up-regulation of pro-inflammatory cytokines such as Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (ICAM-1), Prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-8 in mCMECs was also abrogated by CD200Fc (10 and 100µg/ml) pretreatment. CD200Fc also inhibited CSE-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in mCMECs, such as inhibition of its DNA binding activity, phosphorylated expression, and translocation to nucleus. CONCLUSION: Thus, CD200Fc exert anti-inflammatory effect and protect VEB function in CSE-induced mCMECs. The vasoprotective effects of CD200Fc may be specifically beneficial in pathophysiological conditions associated with smoking related cardiovascular diseases.


Assuntos
Células Endoteliais/efeitos dos fármacos , Imunoglobulina G/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Nicotiana , Fumaça/efeitos adversos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Imunoglobulina G/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fumar/tratamento farmacológico , Fumar/metabolismo
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-480727

RESUMO

Objective To explore the effects of multidrug resistance-associated protein 4 (MRP4) inhibition on pulmonary vascular endothelial barrier dysfunction in septic rats.Methods Sixty Sprague Dawley rats were randomly (random number) divided into three groups:sham-operated group,sepsis group,and sepsis plus MRP4 inhibitor treatment group,with 20 rats in each group.Sepsis was induced by cecal ligation and puncture.MRP4 inhibitor MK571 (20 mg/kg) was administrated by intraperitoneal injection 30 minutes before induction of sepsis.Twenty-four later,serum interlukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels were measured by enzyme-linked immunosorbent assay.Lung injury was assessed by histopathological examination.Lung vascular permeability was evaluated by quantitation of Evans blue dye extravasation from vascular space to lung parenchyma.Results Compared with sham group,serum IL-6 and TNF-α levels were significantly higher in sepsis group.In addition,lung injury and lung vascular permeability were elevated in sepsis group compared to sham group.Importantly,MRP4 inhibitor treatment significantly decreased serum IL-6 and TNF-α levels,improved lung injury and reduced lung vascular permeability in septic rats.Conclusions Inhibition of MRP4 protects against pulmonary vascular endothelial barrier dysfunction in septic rats.

13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-444346

RESUMO

Objective To explore the role of IL-1β in capillary leak syndrome by observing the alterations of AQP-1 expression,apoptosis,and ultrastructural of vascular endothelial cells under the action of IL-1β.Methods Umbilical vein endothelial cells (UVEC) in vitro were randomly allocated into 3 groups:time,concentration,and control.In the time group,UVECs were treated with culture medium containing 20 μg/L IL-1β for3 h(T1),8 h(T2),12 h(T3) and 24 h(T4).In the concentration group,UVECs were treated with culture medium containing 0.2 μg/L(C1),2 μg/L(C2) and 20 μg/L(C3) IL-1β for 24 h.In the control group,UVECs were treated with culture medium without IL-1β for 24 h.The changes of AQP-1 mRNA and protein expression were detected by real-time PCR and Western blot.Apoptosis was detected by flow cytometry,and cell ultrastructural changes were observed by electron microscopy.Results AQP-1 mRNA and protein expression of T1-T4 in the time group and C1-C3 in the concentration group were lower than those of the control group (P < 0.05).The apoptotic rate was increased,and mitochondrial swelling,vacuolar degeneration,karyolysis and necrosis were observed under electron microscopy.These were more pronounced with time or concentration increases.Conclusions IL-1β can cause a decrease of AQP-1 mRNA and protein expression,increase in apoptotic rate and increase in damage to the cells'ultrastructure.This is an important reason for damage to the vascular endothelial barrier and may be associated with capillary leak syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...