Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ann Bot ; 133(4): 521-532, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334466

RESUMO

BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ±â€…0.01 mm2 mm-3 in Lenoir to 0.17 ±â€…0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ±â€…0.015) and Chardonnay (0.041 ±â€…0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.


Assuntos
Doenças das Plantas , Vitis , Xylella , Xilema , Vitis/microbiologia , Vitis/fisiologia , Xilema/fisiologia , Xilema/microbiologia , Xylella/fisiologia , Doenças das Plantas/microbiologia , Microtomografia por Raio-X , Resistência à Doença , Genótipo
2.
Methods Mol Biol ; 2722: 117-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897604

RESUMO

Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.


Assuntos
Lignina , Lipídeos , Lignina/análise , Lipídeos/análise , Plantas , Xilema/química , Parede Celular
3.
Front Plant Sci ; 12: 726461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712253

RESUMO

Fungal grapevine trunk diseases (GTDs) are some of the most pressing threats to grape production worldwide. While these diseases are associated with several fungal pathogens, Phaeomoniella chlamydospora and Phaeoacremonium minimum are important contributors to esca and Petri diseases. Recent research has linked grapevine xylem diameter with tolerance to Pa. chlamydospora in commercial rootstocks. In this study, we screen over 25 rootstocks for xylem characteristics and tolerance to both Pa. chlamydospora and Pm. minimum. Tolerance was measured by fungal incidence and DNA concentration (quantified via qPCR), while histological analyses were used to measure xylem characteristics, including xylem vessels diameter, density, and the proportion of the stem surface area covered by xylem vessels. Rootstocks were grouped into different classes based on xylem characteristics to assess the potential association between vasculature traits and pathogen tolerance. Our results revealed significant differences in all the analyzed xylem traits, and also in DNA concentration for both pathogens among the tested rootstocks. They corroborate the link between xylem vessels diameter and tolerance to Pa. chlamydospora. In Pm. minimum, the rootstocks with the widest xylem diameter proved the most susceptible. This relationship between vasculature development and pathogen tolerance has the potential to inform both cultivar choice and future rootstock breeding to reduce the detrimental impact of GTDs worldwide.

4.
J Exp Bot ; 72(10): 3914-3928, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33718947

RESUMO

Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure.


Assuntos
Vitis , Água , Folhas de Planta , Caules de Planta , Estações do Ano , Xilema
5.
J Exp Bot ; 72(2): 184-198, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32976552

RESUMO

Xylem vascular wilt pathogens cause devastating diseases in plants. Proliferation of these pathogens in the xylem causes massive disruption of water and mineral transport, resulting in severe wilting and death of the infected plants. Upon reaching the xylem vascular tissue, these pathogens multiply profusely, spreading vertically within the xylem sap, and horizontally between vessels and to the surrounding tissues. Plant resistance to these pathogens is very complex. One of the most effective defense responses in resistant plants is the formation of physico-chemical barriers in the xylem tissue. Vertical spread within the vessel lumen is restricted by structural barriers, namely, tyloses and gels. Horizontal spread to the apoplast and surrounding healthy vessels and tissues is prevented by vascular coating of the colonized vessels with lignin and suberin. Both vertical and horizontal barriers compartmentalize the pathogen at the infection site and contribute to their elimination. Induction of these defenses are tightly coordinated, both temporally and spatially, to avoid detrimental consequences such as cavitation and embolism. We discuss current knowledge on mechanisms underlying plant-inducible structural barriers against major xylem-colonizing pathogens. This knowledge may be applied to engineer metabolic pathways of vascular coating compounds in specific cells, to produce plants resistant towards xylem colonizers.


Assuntos
Doenças das Plantas , Solanum lycopersicum , Xilema
6.
rev. udca actual. divulg. cient ; 22(1): e1177, Ene-Jun. 2019. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1094777

RESUMO

ABSTRACT Frogskin is the most limiting disease of cassava crops in Colombia, causing losses in production up to 90%. Since this disease was associatated with 16SrIII phytoplasma presence, a study was carried out to isolate this phytoplasma using liquid and solid culture media. Root, petiol, stem, leaf and cutting tissues of cassava affected by frogsking were employed as source materials. Molecular and microscopy techniques were applied to verify the phytoplasma growth and to discard other microorganism´s presence. The results showed that the media consistently allow phytoplasma growth, and colonies in solid medium were obtained. PCR, qPCR and sequencing tests confirmed the presence of 16SrIII group phytoplasmas in both liquid and solid culture media. Additionally, the isolation of a pigeon pea witches' broom phytoplasma strain (group 16SrIX) was obtained from stems, petioles and flowers of symptomatic Catharanthus roseus confirming the effectiveness of the medium in the phytoplasma isolation and culture. This is the first isolation of field-collected phytoplasma strains in groups 16SrIII and 16SrIX in America that confirm and corroborate the previous results in phytoplasma cultivation achieved on micropropagated and field-collected phytoplasma infected samples.


RESUMEN En Colombia, el ''cuero de sapo'' es la enfermedad más limitante del cultivo de yuca, que ocasiona pérdidas en producción de raíces hasta del 90%. La presente investigación tuvo como objetivo, el aislamiento in vitro del fitoplasma asociado a cuero de sapo. Para ello, se emplearon medios de cultivo líquido y sólido, usando tejidos de raíces, peciolos, tallos, hojas y semillas de yuca, afectada por la enfermedad. Pruebas de PCR, qPCR, secuenciación, microscopia de luz y microscopia electrónica de transmisión fueron aplicadas, para verificar el crecimiento de fitoplasmas y descartar la presencia de otros microrganismos. Los resultados muestran que los medios permiten, consistentemente, el crecimiento de fitoplasmas, obteniendo colonias en medio sólido a partir de medio líquido. Las pruebas de PCR, qPCR y secuenciación confirmaron presencia de Cassava frogskin phytoplasma del grupo 16SrIII, en los dos medios de cultivo. Además, a partir de las colonias, se lograron fotografías de células con morfología y tamaño similares a las fitoplasmáticas. Es la primera vez, en el mundo, que se consolida información suficiente del aislamiento de fitoplasmas en medio artificial. Adicionalmente, se logró el aislamiento de Pigeon pea witches´ broom phytoplasma del grupo IX, a partir de tallos, peciolos y flores de vinca (Catharanthus roseus), con síntomas asociados a fitoplasmas. Este proceso permitió corroborar la efectividad del medio y la morfología de las células fitoplasmáticas, bajo microscopia electrónica.

7.
Tree Physiol ; 39(8): 1438-1445, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30938422

RESUMO

Morphological traits of the plant vascular system such as xylem vessel diameter have been implicated in many physiological processes including resistance to drought-induced xylem cavitation and vessel occlusion during infection with vascular wilt diseases. In both events, xylem vessels lose function because they become filled with air or tyloses and gels. Xylem cavitation has been well studied, whereas vessel occlusion remains purely descriptive even though it is a critical response to wounding injuries and compartmentalization of vascular pathogens. The timing of vessel occlusion is a key determinant to a successful compartmentalization of pathogens within the plant vascular system and we hypothesized that xylem vessel diameter is the driving variable. Using a dye injection method coupled with automated image analysis, we parameterized a model to investigate how xylem vessel diameter affects the speed of vessel occlusion in Vitis vinifera L. cv. Cabernet Sauvignon in response to wounding. Our dataset contains observations from 6,646 vessels at five kinetic points following stem pruning, over a time course of 1 week. Using this approach we provide evidence that the diameter of vessels is a key determinant of the timing of their occlusion. We discuss how these findings impact resistance to vascular wilt diseases in perennial woody hosts.


Assuntos
Vitis , Água , Secas , Caules de Planta , Madeira , Xilema
8.
Front Plant Sci ; 10: 1708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038682

RESUMO

Microbial endophytes are well known to protect host plants against pathogens, thus representing a promising strategy for the control of xylem-colonizing pathogens. To date, the vast majority of microbial communities inhabiting the olive xylem are unknown; therefore, this work pursues the characterization of the xylem-limited microbiome and determines whether the culture isolation medium, olive genotype, and the plant material used to analyze it can have an effect on the bacterial populations retrieved. Macerated xylem tissue and xylem sap extracted with the Scholander chamber from olive branches obtained from two cultivated and a wild olive genotypes were analyzed using culture-dependent and -independent approaches. In the culture-dependent approach using four solid culture media, a total of 261 bacterial isolates were identified after performing Sanger sequencing of 16S rRNA. Culturable bacteria clustered into 34 genera, with some effect of culture media for bacterial isolation. The cultivated bacteria belonged to four phyla and the most abundant genera included Frigoribacterium (18.8%), Methylobacterium (16.4%), and Sphingomonas (14.6%). On the other hand, in the culture-independent approach conducted using Illumina MiSeq 16S rRNA amplicon sequencing [next-generation sequencing (NGS)] of the xylem extracts, we identified a total of 48 operational taxonomic units (OTUs) belonging to five phyla, being Sphingomonas (30.1%), Hymenobacter (24.1%) and Methylobacterium (22.4%) the most representative genera (>76% of reads). In addition, the results indicated significant differences in the bacterial communities detected in the xylem sap depending on the genotype of the olive tree studied and, to a minor extent, on the type of sap extraction method used. Among the total genera identified using NGS, 14 (41.2%) were recovered in the culture collection, whereas 20 (58.8%) in the culture collection were not captured by the NGS approach. Some of the xylem-inhabiting bacteria isolated are known biocontrol agents of plant pathogens, whereas for others little information is known and are first reported for olive. Consequently, the potential role of these bacteria in conferring olive tree protection against xylem pathogens should be explored in future research.

9.
3 Biotech ; 8(9): 380, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30148030

RESUMO

To develop a new strategy that controls vascular pathogen infections in economic crops, we examined a possible enhancer of the vascular activity of XYLOGEN PROTEIN 1 promoter (Px). This protein is specifically expressed in the vascular tissues of Arabidopsis thaliana and plays an important role in xylem development. Although Px is predicted as vascular-specific, its activity is hard to detect and highly susceptible to plant and environmental conditions. The cauliflower mosaic virus 35S promoter (35S) is highly active in directing transgene expression. To test if 35S could enhance Px activity, while vascular specificity of the promoter is retained, we examined the expression of the uidA reporter gene, which encodes ß-glucuronidase (GUS), under the control of a chimeric promoter (35S-Px) or Px by generating 35S-Px-GUS and Px-GUS constructs, which were transformed into tobacco seedlings. Both 35S-Px and Px regulated gene expression in vascular tissues. However, GUS expression driven by 35S-Px was not detected in 30- and 60-day-old plants. Quantitative real-time PCR analysis showed that GUS gene expression regulated by 35S-Px was 6.2-14.9-fold higher in vascular tissues than in leaves. Histochemical GUS staining demonstrated that 35S-Px was strongly active in the xylem and phloem. Thus, fusion of 35S and Px might considerably enhance the strength of Px and increase its vascular specificity. In addition to confirming that 35S enhances the activity of a low-level tissue-specific promoter, these findings provide information for further improving the activity of such promoters, which might be useful for engineering new types of resistant genes against vascular infections.

10.
Plant Physiol Biochem ; 123: 170-179, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29247937

RESUMO

Ceratocystis wilt, caused by Ceratocystis fimbriata, is currently one of the most important disease in eucalypt plantations. Plants infected by C. fimbriata have lower volumetric growth, lower pulp yields and reduced timber values. The physiological bases of infection induced by this pathogen in eucalypt plant are not known. Therefore, this study aims to assess the physiological and metabolic changes in eucalypt clones that are resistant and susceptible to C. fimbriata. Once, we evaluated in detail their leaf gas exchange, chlorophyll a fluorescence, water potential, metabolite profiling and growth-related parameters. When inoculated, the susceptible clone displayed reduced water potential, CO2 assimilation rate, stomatal conductance, transpiration rate, photochemical quenching coefficient, electron transport rate, and root biomass. Inoculated resistant and susceptible clones both presented higher respiration rates than healthy plants. Many compounds of primary and secondary metabolism were significantly altered after fungal infection in both clones. These results suggest that, C. fimbriata interferes in the primary and secondary metabolism of plants that may be linked to the induction of defense mechanisms and that, due to water restrictions caused by the fungus in susceptible plants, there is a partial closure of the stomata to prevent water loss and a consequent reduction in photosynthesis and the transpiration rate, which in turn, leads to a decrease in the plant's growth-related. These results combined, allowed for a better understanding of the physiological and metabolic changes following the infectious process of C. fimbriata, which limit eucalypt plant growth.


Assuntos
Ascomicetos/metabolismo , Eucalyptus/metabolismo , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia
11.
Plant Cell Environ ; 39(9): 2085-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27037757

RESUMO

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.


Assuntos
Ecossistema , Árvores/fisiologia , Água/fisiologia , Ciclo Hidrológico
12.
J Exp Bot ; 59(10): 2649-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18487632

RESUMO

Xylella fastidiosa (Xf) is a xylem-limited bacterial pathogen that causes leaf scorch symptoms in numerous plant species in urban, agricultural, and natural ecosystems worldwide. The exact mechanism of hydraulic disruption and systemic colonization of xylem by Xf remains elusive across all host plants. To understand both processes better, the functional and structural characteristics of xylem in different organs of both healthy and Xf-infected trees of several Quercus species were studied. Hydraulic conductivity (K(s)) in Xf-infected petioles of Q. palustris and Q. rubra decreased significantly compared with healthy trees as the season progressed and plummeted to zero with the onset of scorch symptoms. Prior to the onset of symptoms, embolism was as much as 3.7 times higher in Xf-infected petioles compared with healthy controls and preceded significant reductions in K(s). Embolism likely resulted from pit membrane degradation during colonization of new petiole xylem and triggered the process that eventually led to vessel occlusion. Pit membrane porosity was studied using the following four methods to determine if a pathway exists in the xylem network of woody stems that allows for passive Xf migration: (i) calculations based on vulnerability to cavitation data, (ii) scanning electron micrographs, (iii) microsphere injections, and (iv) air seeding thresholds on individual vessels. All four methods consistently demonstrated that large pit membrane pores (i.e. greater than the diameter of individual Xf) occur frequently throughout the secondary stem xylem in several Quercus species. These large pores probably facilitate systemic colonization of the secondary xylem network and contribute to the high susceptibility to bacterial leaf scorch exhibited among these species.


Assuntos
Doenças das Plantas/microbiologia , Quercus/metabolismo , Quercus/microbiologia , Xylella/fisiologia , Xilema/metabolismo , Xilema/microbiologia , Transporte Biológico , Condutividade Elétrica , Xilema/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...