Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Eur J Pharmacol ; : 176842, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033837

RESUMO

Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.

2.
Function (Oxf) ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984978

RESUMO

OBJECTIVE: Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. APPROACH AND RESULTS: Whole-cell voltage-clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance, and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae, and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. CONCLUSIONS: The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs.

3.
Drug Discov Today ; 29(7): 104051, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838960

RESUMO

Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.


Assuntos
Músculo Liso Vascular , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Músculo Liso Vascular/metabolismo , Células Endoteliais/metabolismo , Sinalização do Cálcio/fisiologia , Miócitos de Músculo Liso/metabolismo
4.
Purinergic Signal ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713328

RESUMO

Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,ß-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.

5.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791133

RESUMO

Identifying alterations caused by aging could be an important tool for improving the diagnosis of cardiovascular diseases. Changes in vascular tone regulation involve various mechanisms, like NO synthase activity, activity of the sympathetic nervous system, production of prostaglandin, endothelium-dependent relaxing, and contracting factors, etc. Surprisingly, Ca2+-dependent Cl- channels (CaCCs) are involved in all alterations of the vascular tone regulation mentioned above. Furthermore, we discuss these mechanisms in the context of ontogenetic development and aging. The molecular and electrophysiological mechanisms of CaCCs activation on the cell membrane of the vascular smooth muscle cells (VSMC) and endothelium are explained, as well as the age-dependent changes that imply the activation or inhibition of CaCCs. In conclusion, due to the diverse intracellular concentration of chloride in VSMC and endothelial cells, the activation of CaCCs depends, in part, on intracellular Ca2+ concentration, and, in part, on voltage, leading to fine adjustments of vascular tone. The activation of CaCCs declines during ontogenetic development and aging. This decline in the activation of CaCCs involves a decrease in protein level, the impairment of Ca2+ influx, and probably other alterations in vascular tone regulation.


Assuntos
Envelhecimento , Cálcio , Canais de Cloreto , Músculo Liso Vascular , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Cloreto/metabolismo , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Hypertens Res ; 47(6): 1588-1606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600279

RESUMO

Extracellular vesicles (EVs) are released from all cell types studied to date and act as intercellular communicators containing proteins, nucleic acids and lipid cargos. They have been shown to be involved in maintaining homoeostasis as well as playing a role in the development of pathology including hypertension and cardiovascular disease. It is estimated that there is 109-1010 circulating EVs/mL in the plasma of healthy individuals derived from various sources. While the effect of EVs on vascular haemodynamic parameters will be dependent on the details of the model studied, we systematically searched and summarized current literature to find patterns in how exogenously injected EVs affected vascular haemodynamics. Under homoeostatic conditions, evidence from wire and pressure myography data demonstrate that injecting isolated EVs derived from cell types found in blood and blood vessels resulted in the impairment of vasodilation in blood vessels ex vivo. Impaired vasodilation was also observed in rodents receiving intravenous injections of human plasma EVs from cardiovascular diseases including valvular heart disease, acute coronary syndrome, myocardial infarction and end stage renal disease. When EVs were derived from models of metabolic syndromes, such as diabetes, these EVs enhanced vasoconstriction responses in blood vessels ex vivo. There were fewer publications that assessed the effect of EVs in anaesthetised or conscious animals to confirm whether effects on the vasculature observed in ex vivo studies translated into alterations in vascular haemodynamics in vivo. In the available conscious animal studies, the in vivo data did not always align with the ex vivo data. This highlights the importance of in vivo work to determine the effects of EVs on the integrative vascular haemodynamics.


Assuntos
Vesículas Extracelulares , Hemodinâmica , Animais , Humanos , Doenças Cardiovasculares/fisiopatologia , Hemodinâmica/fisiologia
7.
Br J Pharmacol ; 181(16): 2810-2832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651236

RESUMO

BACKGROUND AND PURPOSE: The single layer of cells lining all blood vessels, the endothelium, is a sophisticated signal co-ordination centre that controls a wide range of vascular functions including the regulation of blood pressure and blood flow. To co-ordinate activities, communication among cells is required for tissue level responses to emerge. While a significant form of communication occurs by the propagation of signals between cells, the mechanism of propagation in the intact endothelium is unresolved. EXPERIMENTAL APPROACH: Precision signal generation and targeted cellular manipulation was used in conjunction with high spatiotemporal mesoscale Ca2+ imaging in the endothelium of intact blood vessels. KEY RESULTS: Multiple mechanisms maintain communication so that Ca2+ wave propagation occurs irrespective of the status of connectivity among cells. Between adjoining cells, regenerative IP3-induced IP3 production transmits Ca2+ signals and explains the propagated vasodilation that underlies the increased blood flow accompanying tissue activity. The inositide is itself sufficient to evoke regenerative phospholipase C-dependent Ca2+ waves across coupled cells. None of gap junctions, Ca2+ diffusion or the release of extracellular messengers is required to support this type of intercellular Ca2+ signalling. In contrast, when discontinuities exist between cells, ATP released as a diffusible extracellular messenger transmits Ca2+ signals across the discontinuity and drives propagated vasodilation. CONCLUSION AND IMPLICATIONS: These results show that signalling switches underlie endothelial cell-to-cell signal transmission and reveal how communication is maintained in the face of endothelial damage. The findings provide a new framework for understanding wave propagation and cell signalling in the endothelium.


Assuntos
Sinalização do Cálcio , Comunicação Celular , Endotélio Vascular , Comunicação Celular/fisiologia , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo
8.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460742

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Assuntos
Artérias , NADPH Oxidases , Ratos , Masculino , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADP , Metoxamina , Artérias/fisiologia , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Superóxidos/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38507180

RESUMO

Vascular tone regulation is a crucial aspect of cardiovascular physiology, with significant implications for overall cardiovascular health. However, the precise physiological mechanisms governing smooth muscle cell contraction and relaxation remain uncertain. The complexity of vascular tone regulation stems from its multiscale and multifactorial nature, involving global hemodynamics, local flow conditions, tissue mechanics, and biochemical pathways. Bridging this knowledge gap and translating it into clinical practice presents a challenge. In this paper, a computational model is presented to integrate chemo-mechano-biological pathways with cardiovascular biomechanics, aiming to unravel the intricacies of vascular tone regulation. The computational framework combines an algebraic description of global hemodynamics with detailed finite element analyses at the scale of vascular segments for describing their passive and active mechanical response, as well as the molecular transport problem linked with chemo-biological pathways triggered by wall shear stresses. Their coupling is accounted for by considering a two-way interaction. Specifically, the focus is on the role of nitric oxide-related molecular pathways, which play a critical role in modulating smooth muscle contraction and relaxation to maintain vascular tone. The computational framework is employed to examine the interplay between localized alterations in the biomechanical response of a specific vessel segment-such as those induced by calcifications or endothelial dysfunction-and the broader global hemodynamic conditions-both under basal and altered states. The proposed approach aims to advance our understanding of vascular tone regulation and its impact on cardiovascular health. By incorporating chemo-mechano-biological mechanisms into in silico models, this study allows us to investigate cardiovascular responses to multifactorial stimuli and incorporate the role of adaptive homeostasis in computational biomechanics frameworks.

10.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474253

RESUMO

The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.


Assuntos
Lesões Encefálicas , Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/farmacologia , Nitrogênio/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Niacinamida/farmacologia , Lesões Encefálicas/tratamento farmacológico
11.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399371

RESUMO

Transient receptor potential (TRP) channels are pivotal in modulating vascular functions. In fact, topical application of cinnamaldehyde or capsaicin (TRPA1 and TRPV1 channel agonists, respectively) induces "local" changes in blood flow by releasing vasodilator neuropeptides. We investigated TRP channels' contributions and the pharmacological mechanisms driving vasodilation in human isolated dermal arteries. Ex vivo studies assessed the vascular function of artery segments and analyzed the effects of different compounds. Concentration-response curves to cinnamaldehyde, pregnenolone sulfate (PregS, TRPM3 agonist), and capsaicin were constructed to evaluate the effect of the antagonists HC030031 (TRPA1); isosakuranetin (TRPM3); and capsazepine (TRPV1). Additionally, the antagonists/inhibitors olcegepant (CGRP receptor); L-NAME (nitric oxide synthase); indomethacin (cyclooxygenase); TRAM-34 plus apamin (K+ channels); and MK-801 (NMDA receptors, only for PregS) were used. Moreover, CGRP release was assessed in the organ bath fluid post-agonist-exposure. In dermal arteries, cinnamaldehyde- and capsaicin-induced relaxation remained unchanged after the aforementioned antagonists, while PregS-induced relaxation was significantly inhibited by isosakuranetin, L-NAME and MK-801. Furthermore, there was a significant increase in CGRP levels post-agonist-exposure. In our experimental model, TRPA1 and TRPV1 channels seem not to be involved in cinnamaldehyde- or capsaicin-induced relaxation, respectively, whereas TRPM3 channels contribute to PregS-induced relaxation, possibly via CGRP-independent mechanisms.

12.
Front Mol Biosci ; 11: 1338528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348465

RESUMO

It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).

13.
Clin Perinatol ; 51(1): 1-19, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325936

RESUMO

Fetal lungs have fewer and smaller arteries with higher pulmonary vascular resistance (PVR) than a newborn. As gestation advances, the pulmonary circulation becomes more sensitive to changes in pulmonary arterial oxygen tension, which prepares them for the dramatic drop in PVR and increase in pulmonary blood flow (PBF) that occur when the baby takes its first few breaths of air, thus driving the transition from fetal to postnatal circulation. Dynamic and intricate regulatory mechanisms control PBF throughout development and are essential in supporting gas exchange after birth. Understanding these concepts is crucial given the role the pulmonary vasculature plays in the development of complications with transition, such as in the setting of persistent pulmonary hypertension of the newborn and congenital heart disease. An improved understanding of pulmonary vascular regulation may reveal opportunities for better clinical management.


Assuntos
Feto , Pulmão , Gravidez , Recém-Nascido , Feminino , Humanos , Feto/fisiologia , Circulação Pulmonar/fisiologia , Cuidado Pré-Natal , Resistência Vascular/fisiologia
14.
Arterioscler Thromb Vasc Biol ; 44(3): 653-665, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269590

RESUMO

BACKGROUND: Single-cell RNA-Seq analysis can determine the heterogeneity of cells between different tissues at a single-cell level. Coronary artery endothelial cells (ECs) are important to coronary blood flow. However, little is known about the heterogeneity of coronary artery ECs, and cellular identity responses to flow. Identifying endothelial subpopulations will contribute to the precise localization of vascular endothelial subpopulations, thus enabling the precision of vascular injury treatment. METHODS: Here, we performed a single-cell RNA sequencing of 31 962 cells and functional assays of 3 branches of the coronary arteries (right coronary artery/circumflex left coronary artery/anterior descending left coronary artery) in wild-type mice. RESULTS: We found a compendium of 7 distinct cell types in mouse coronary arteries, mainly ECs, granulocytes, cardiac myocytes, smooth muscle cells, lymphocytes, myeloid cells, and fibroblast cells, and showed spatial heterogeneity between arterial branches. Furthermore, we revealed a subpopulation of coronary artery ECs, CD133+TRPV4high ECs. TRPV4 (transient receptor potential vanilloid 4) in CD133+TRPV4high ECs is important for regulating vasodilation and coronary blood flow. CONCLUSIONS: Our study elucidates the nature and range of coronary arterial cell diversity and highlights the importance of coronary CD133+TRPV4high ECs in regulating coronary vascular tone.


Assuntos
Células Endoteliais , Canais de Cátion TRPV , Camundongos , Animais , Células Endoteliais/metabolismo , Canais de Cátion TRPV/genética , Análise da Expressão Gênica de Célula Única , Vasodilatação/fisiologia , Endotélio Vascular/metabolismo
15.
Eur J Pharmacol ; 959: 176104, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802278

RESUMO

Vascular tone regulation is a key event in controlling blood flow in the body. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) help regulate the vascular tone. Abnormal vascular responsiveness to various stimuli, including constrictors and dilators, has been observed in pathophysiological states although EC and VSMC coordinate to maintain the exquisite balance between contraction and relaxation in vasculatures. Thus, investigating the mechanisms underlying vascular tone abnormality is very important in maintaining vascular health and treating vasculopathy. Increased intracellular free Ca2+ concentration ([Ca2+]i) is one of the major triggers initiating each EC and VSMC response. Transient receptor potential vanilloid family member 4 (TRPV4) is a Ca2+-permeable non-selective ion channel, which is activated by several stimuli, and is presented in both ECs and VSMCs. Therefore, TRPV4 plays an important role in vascular responses. Emerging evidence indicates the role of TRPV4 on the functions of ECs and VSMCs in various pathophysiological states, including hypertension, diabetes, and obesity. This review focused on the link between TRPV4 and the functions of ECs/VSMCs, particularly its role in vascular tone and responsiveness to vasoactive substances.


Assuntos
Hipertensão , Canais de Cátion TRPV , Humanos , Células Endoteliais , Hemodinâmica , Endotélio Vascular/fisiologia
16.
Prostaglandins Other Lipid Mediat ; 169: 106786, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806440

RESUMO

Specialized pro-resolving lipid mediators (SPMs), derived from polyunsaturated fatty acids are important mediators in the resolution of inflammation. Recent studies have focused on the effects of SPMs in cardiovascular health and diseases. However, little is known about the effect SPMs on human vascular tone. Therefore, in this study it is aimed to investigate the effect of various SPMs including resolvin D- and E-series, maresin-1 (MaR1) and lipoxin-A4 (LxA4) on the vascular tone of human isolated saphenous vein (SV) preparations under inflammatory conditions. In addition, we aimed to evaluate the effects of SPMs on the release of pro-inflammatory mediators, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF- α) from human SV. Pretreatment of isolated of human SV with resolvin E1 (RvE1), resolvin D1 (RvD1) and MaR1 (100 nM, 18 h) significantly reduced the contractile responses to thromboxane A2 mimetic, U46619 whereas pretreatment with LxA4 and RvD2 (100 nM, 18 h) had no significant effect on the vascular tone of SV. Moreover, RvE1, RvD1 and MaR1 but not LxA4 and RvD2 (100 nM, 18 h) pretreatment diminished the release of MCP-1 and TNF-α from SV. In conclusion, our findings suggest that pre-treatment with RvE1, RvD1, and MaR1 could have potential benefits in decreasing graft vasospasm and vascular inflammation in SV.


Assuntos
Ácidos Docosa-Hexaenoicos , Veia Safena , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação , Fator de Necrose Tumoral alfa/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Quimiocina CCL2 , Mediadores da Inflamação
17.
J Vasc Res ; 60(5-6): 245-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37769627

RESUMO

INTRODUCTION: Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. METHODS: The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. RESULTS: Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. CONCLUSION: These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.


Assuntos
Adenosina , Músculo Esquelético , Arteríolas/fisiologia , Músculo Esquelético/irrigação sanguínea , Norepinefrina , Adrenérgicos
19.
Front Cardiovasc Med ; 10: 1130312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342437

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally, with CVDs accounting for nearly 30% of deaths worldwide each year. G-protein-coupled receptors (GPCRs) are the most prominent family of receptors on the cell surface, and play an essential regulating cellular physiology and pathology. Some GPCR antagonists, such as ß-blockers, are standard therapy for the treatment of CVDs. In addition, nearly one-third of the drugs used to treat CVDs target GPCRs. All the evidence demonstrates the crucial role of GPCRs in CVDs. Over the past decades, studies on the structure and function of GPCRs have identified many targets for the treatment of CVDs. In this review, we summarize and discuss the role of GPCRs in the function of the cardiovascular system from both vascular and heart perspectives, then analyze the complex ways in which multiple GPCRs exert regulatory functions in vascular and heart diseases. We hope to provide new ideas for the treatment of CVDs and the development of novel drugs.

20.
Nitric Oxide ; 138-139: 1-9, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268184

RESUMO

Dietary nitrate (NO3-) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO2-]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO3-. We investigated the correlations between changes in NO biomarkers in different blood compartments and changes in BP variables following acute NO3- ingestion. Resting BP was measured and blood samples were collected at baseline, and at 1, 2, 3, 4 and 24 h following acute beetroot juice (∼12.8 mmol NO3-, ∼11 mg NO3-/kg) ingestion in 20 healthy volunteers. Spearman rank correlation coefficients were determined between the peak individual increases in NO biomarkers (NO3-, NO2-, RSNOs) in plasma, RBC and whole blood, and corresponding decreases in resting BP variables. No significant correlation was observed between increased plasma [NO2-] and reduced BP, but increased RBC [NO2-] was correlated with decreased systolic BP (rs = -0.50, P = 0.03). Notably, increased RBC [RSNOs] was significantly correlated with decreases in systolic (rs = -0.68, P = 0.001), diastolic (rs = -0.59, P = 0.008) and mean arterial pressure (rs = -0.64, P = 0.003). Fisher's z transformation indicated no difference in the strength of the correlations between increases in RBC [NO2-] or [RSNOs] and decreased systolic blood pressure. In conclusion, increased RBC [RSNOs] may be an important mediator of the reduction in resting BP observed following dietary NO3- supplementation.


Assuntos
Beta vulgaris , Hipotensão , S-Nitrosotióis , Humanos , Pressão Sanguínea , Nitratos , Nitritos , Dióxido de Nitrogênio , Óxido Nítrico/farmacologia , Suplementos Nutricionais , Eritrócitos , S-Nitrosotióis/farmacologia , Ingestão de Alimentos , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...