Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biochem Biophys Res Commun ; 636(Pt 1): 10-16, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332470

RESUMO

The vasoactive intestinal peptide receptor 2 (VIPR2) has attracted attention as a drug target for the treatment of mental disorders, cancer, and immune diseases. In 2021, we identified the peptide KS-133 as a VIPR2-selective antagonist. In this study, we aimed to elucidate the binding mechanism between VIPR2 and KS-133. To this end, VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex models were constructed through AlphaFold version 2.0 and molecular dynamic simulations. Our models revealed that: (i) both KS-133 and VIP have helical structures, (ii) the interaction residues on VIPR2 for both peptides are similar, and (iii) the orientation of their helices upon their binding to VIPR2 are different by ∼45°. Interestingly, in the process of constructing the aforementioned models, an S-S bond formation between Cys25 and Cys192 of the human VIPR2 was identified. Although these two Cys residues are highly conserved among species (i.e., corresponding to Cys24 and Cys191 in the mouse), no previous reports regarding this S-S bond formation exist. In order to clarify the potential role of this S-S bond in the VIPR2 has functional consequences, a cell line expressing the mouse VIPR2(Cys24Ala, Cys191Ala) was generated. During the VIP stimulation of this cell line, the phosphorylation of AKT (a downstream signal marker of VIPR2) was found to be significantly attenuated, thereby suggesting that the S-S bond has a functional significance for VIPR2. Our study not only elucidates the VIPR2-binding mechanism of KS-133 for the first time, but also provides new insights into the structural biology of VIPR2.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores de Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Linhagem Celular
2.
Biology (Basel) ; 11(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36101343

RESUMO

The relationship between inflammatory bowel disease and sleep disturbances is complicated and of increasing interest. We investigated the inflammatory and immunological consequences of EA in sleep-deprived colitis and found that dextran sulfate sodium (DSS)-induced colitis in sleep-fragmented (SF) mice was more severe than that in mice with normal sleep. This increase in the severity of colitis was accompanied by reduced body weight, shortened colon length, and deteriorated disease activity index. DSS with SF mice presented obvious diminished intestinal tight junction proteins (claudin-1 and occludin), elevated proinflammatory cytokines (CRP, IFN-γ, IL-6), lowered melatonin and adiponectin levels, downregulated vasoactive intestinal peptide (VIP) type 1 and 2 receptor (VPAC1, VPAC2) expression, and decreased diversity of gut bacteria. EA ameliorated colitis severity and preserved the performance of the epithelial tight junction proteins and VIP receptors, especially VPAC2. Meanwhile, the innate lymphoid cells-derived cytokines in both group 2 (IL-4, IL5, IL-9, IL-13) and group 3 (IL-22, GM-CSF) were elevated in mice colon tissue. Furthermore, dysbiosis was confirmed in the DSS group with and without SF, and EA could maintain the species diversity. Firmicutes could be restored, such as Lachnospiraceae, and Proteobacteria become rebalanced, mainly Enterobacteriaceae, after EA intervention. On the other hand, SF plays different roles in physiological and pathological conditions. In normal mice, interrupted sleep did not affect the expression of claudin-1 and occludin. But VPAC1, VPAC2, and gut microbiota diversity, including Burkholderiaceae and Rhodococcus, were opposite to mice in an inflamed state.

3.
Acta Pharm Sin B ; 12(4): 1761-1780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847486

RESUMO

Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.

4.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 957-965, 2022 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-35869757

RESUMO

OBJECTIVE: To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC). METHODS: We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice. RESULTS: Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05). CONCLUSION: VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Luciferases/genética , Metilação , Camundongos , Camundongos Nus , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-941028

RESUMO

OBJECTIVE@#To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC).@*METHODS@#We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice.@*RESULTS@#Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05).@*CONCLUSION@#VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Assuntos
Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Luciferases/genética , Metilação , Camundongos Nus , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Fator de Transcrição AP-2/metabolismo
6.
Sex Med ; 9(4): 100390, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34246178

RESUMO

INTRODUCTION: Female sexual arousal disorder (FSAD) is a common issue causing physical and psychological pain, but it has no standard diagnostic criteria or treatment. So its pathogenesis desiderates to be explored. AIM: To investigate the specific function of miR-122-5p in FSAD. METHODS: 18 subjects were grouped into FSAD and normal control groups according to the Chinese version of the Female Sexual Function Index, and the expression levels of miR-122-5p and vasoactive intestinal peptide receptor 1 (VIPR1) protein in their tissue were verified through real-time quantitative polymerase chain reaction (qRT-PCR) and western blot (WB) analysis. Then in vitro experiment, miR-122-5p was overexpressed or inhibited in rat vaginal smooth muscle cells (SMCs). The relaxation of rat vaginal SMCs was reflected by the cell morphology, intracellular free cytosolic calcium ion (Ca2+) levels, cell proliferation and apoptosis, together with the cyclic adenosine monophosphate (cAMP) concentration and protein kinase A (PKA) activities. Additionally, the expression levels of relaxation-related proteins, including VIPR1, stimulatory G protein (Gs), adenylate cyclase (AC), and PKA, were detected based on WB analysis. Furthermore, a rescue experiment that simultaneously overexpressed or silenced miR-122-5p and VIPR1 was conducted, and all the indicators were evaluated. MAIN OUTCOMES MEASURE: The expression level of VIPR1 and downstream proteins, cell morphology, cell proliferation and apoptosis, and intracellular free Ca2+ levels were examined. RESULTS: We verified that women with FSAD had higher miR-122-5p and lower VIPR1 protein. Then overexpressing miR-122-5p decreased relaxation of rat vaginal SMCs, which was manifested as a contractile morphology of cells, an increased intracellular free Ca2+ concentration, and lower cAMP concentration and PKA activity. Moreover, by rescue experiments, we inferred that VIPR1 was the target of miR-122-5p and affected the relaxation function of vaginal SMCs. CONCLUSION: miR-122-5p regulates the relaxation of vaginal SMCs in FSAD by targeting VIPR1, ulteriorly providing an underlying diagnostic and therapeutic target for FSAD. Cong S, Gui T, Shi Q, et al. Overexpressing miR-122-5p Inhibits the Relaxation of Vaginal Smooth Muscle in Female Sexual Arousal Disorder by Targeting Vasoactive Intestinal Peptide Receptor 1. Sex Med 2021;9:100390.

7.
Ann Palliat Med ; 10(3): 3067-3077, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33849096

RESUMO

BACKGROUND: Vasoactive intestinal peptide (VIP) is an important neurotransmitter involved in the modulation of gastrointestinal function through the stimulation of VIP receptors. However, the expression of VPAC1R, VPAC2R and PAC1R in the human Lower esophageal sphincter (LES) has not been fully clarified. Therefore, the purpose of this study is to explore the expression of these receptors in the human Lower esophageal sphincter, the responses of the Lower esophageal sphincter to Vasoactive intestinal peptide, and the role of Vasoactive intestinal peptide receptors in the responses. METHODS: Sling and clasp fiber samples of LES were acquired from patients undergoing subtotal esophagectomy, while circular muscle bundles from the esophagus and gastric fundus were used as control groups. Western blotting and RT-PCR technology were performed to determine the expression of the three VIP receptor subtypes. The isometric tension responses of the muscle sample strips to Ro25-1553 and PG99-465, and the effect of electrical field stimulation (EFS) on the sling and clasp fibers were studied. RESULTS: We found that VPAC2R messenger RNA (mRNA) and protein were expressed in the sling and clasp fibers of human LES. However, no VPAC1R or PAC1R mRNA and protein expressions were found in the LES samples. The sling and clasp fibers of the LES produced significant concentration-dependent relaxation following exposure to Ro25-1553 and EFS could induce them to produce frequency-dependent relaxation. Furthermore, the relaxation responses of the LES were inhibited by PG99-465 and induced by EFS and Ro25-1553. CONCLUSIONS: VPAC2R, but not VPAC1R or PAC1R, is expressed by the human LES. The relaxation responses of the LES generated by the VIP receptor agonist Ro25-1553 and EFS could be inhibited by the selective VPAC2 receptor antagonist PG99-465. VPAC2R may be important for the generation of relaxation and functional regulation of the LES.


Assuntos
Esfíncter Esofágico Inferior , Receptores de Peptídeo Intestinal Vasoativo , Estimulação Elétrica , Esofagectomia , Humanos , Neurotransmissores , Receptores de Peptídeo Intestinal Vasoativo/genética
8.
Int J Mol Sci ; 20(18)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491880

RESUMO

Vasoactive intestinal peptide receptor 1 (VPAC1) is a member of a secretin-like subfamily of G protein-coupled receptors. Its endogenous neuropeptide (VIP), secreted by neurons and immune cells, modulates various physiological functions such as exocrine and endocrine secretions, immune response, smooth muscles relaxation, vasodilation, and fetal development. As a drug target, VPAC1 has been selected for therapy of inflammatory diseases but drug discovery is still hampered by lack of its crystal structure. In this study we presented the homology model of this receptor constructed with the well-known web service GPCRM. The VPAC1 model is composed of extracellular and transmembrane domains that form a complex with an endogenous hormone VIP. Using the homology model of VPAC1 the mechanism of action of potential drug candidates for VPAC1 was described. Only two series of small-molecule antagonists of confirmed biological activity for VPAC1 have been described thus far. Molecular docking and a series of molecular dynamics simulations were performed to elucidate their binding to VPAC1 and resulting antagonist effect. The presented work provides the basis for the possible binding mode of VPAC1 antagonists and determinants of their molecular recognition in the context of other class B GPCRs. Until the crystal structure of VPAC1 will be released, the presented homology model of VPAC1 can serve as a scaffold for drug discovery studies and is available from the author upon request.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/química , Sítios de Ligação , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/antagonistas & inibidores
9.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G785-G796, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978113

RESUMO

Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.


Assuntos
Ânions/metabolismo , Sistema Nervoso Entérico/metabolismo , Íleo , Vias Neurais/metabolismo , Neurotensina/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Animais , Hormônios Gastrointestinais/metabolismo , Íleo/inervação , Íleo/fisiologia , Mucosa Intestinal/metabolismo , Ratos , Receptores de Neurotensina/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R594-R606, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758978

RESUMO

The stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its specific receptor PACAP type 1 receptor (PAC1) have been implicated in sudden infant death syndrome (SIDS). PACAP is also critical to the neonatal cardiorespiratory response to homeostatic stressors identified in SIDS, including hypoxia. However, which of PACAP's three receptors, PAC1, vasoactive intestinal peptide receptor type 1 (VPAC1), and/or vasoactive intestinal peptide receptor type 2 (VPAC2), are involved is unknown. In this study, we hypothesized that PAC1, but not VPAC2, is involved in mediating the cardiorespiratory response to hypoxia during neonatal development. To test this hypothesis, head-out plethysmography and surface ECG electrodes were used to assess the cardiorespiratory variables of unanesthetized postnatal day 4 PAC1 and VPAC2-knockout (KO) and wild-type (WT) mice in response to a 10% hypoxic challenge. Our results demonstrate that compared with WT pups, the early and late hypoxic rate of expired CO2 (V̇co2), V̇co2 and ventilatory responses were blunted in PAC1-KO neonates, and during the posthypoxic period, minute ventilation (V̇e), V̇co2 and heart rate were increased, while the increase in apneas normally associated with the posthypoxic period was reduced. Consistent with impaired cardiorespiratory control in these animals, the V̇e/V̇co2 slope was reduced in PAC1-KO pups, suggesting that breathing was inappropriately matched to metabolism. In contrast, VPAC2-KO pups exhibited elevated heart rate variability during hypoxia compared with WT littermates, but the effects of the VPAC2-KO genotype on breathing were minimal. These findings suggest that PAC1 plays the principal role in mediating the cardiorespiratory effects of PACAP in response to hypoxic stress during neonatal development and that defective PACAP signaling via PAC1 may contribute to the pathogenesis of SIDS.


Assuntos
Sistema Cardiovascular/metabolismo , Frequência Cardíaca , Hipóxia/metabolismo , Pulmão/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ventilação Pulmonar , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Receptores Tipo II de Peptídeo Intestinal Vasoativo/deficiência , Morte Súbita do Lactente/etiologia , Animais , Animais Recém-Nascidos , Sistema Cardiovascular/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/genética , Hipóxia/fisiopatologia , Recém-Nascido , Pulmão/fisiopatologia , Masculino , Camundongos Knockout , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transdução de Sinais , Morte Súbita do Lactente/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-29674997

RESUMO

Multi-membrane spanning proteins, such as G protein-coupled receptors (GPCRs) and ion channels, are extremely difficult to purify as native proteins. Consequently, the generation of antibodies that recognize the native conformation can be challenging. By combining genetic immunization, phage display, and biopanning, we identified a panel of monovalent antibodies (nanobodies) targeting the vasoactive intestinal peptide receptor 1 (VPAC1) receptor. The nine unique nanobodies that were classified into four different families based on their CDR3 amino acid sequence and length, were highly specific for the human receptor and bind VPAC1 with moderate affinity. They all recognize a similar epitope localized in the extracellular N-terminal domain of the receptor and distinct from the orthosteric binding site. In agreement with binding studies, which showed that the nanobodies did not interfere with VIP binding, all nanobodies were devoid of any functional properties. However, we observed that the binding of two nanobodies was slightly increased in the presence of VPAC1 agonists [vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27)], but decreased in the presence of VPAC1 antagonist. As no evidence of allosteric activity was seen in VIP binding studies nor in functional assays, it is, therefore, possible that the two nanobodies may behave as very weak allosteric modulators of VPAC1, detectable only in some sensitive settings, but not in others. We demonstrated that the fluorescently labeled nanobodies detect VPAC1 on the surface of human leukocytes as efficiently as a reference mouse monoclonal antibody. We also developed a protocol allowing efficient detection of VPAC1 by immunohistochemistry in paraffin-embedded human gastrointestinal tissue sections. Thus, these nanobodies constitute new original tools to further investigate the role of VPAC1 in physiological and pathological conditions.

13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-692521

RESUMO

Bronchial asthma is a heterogeneous disease characterized by airway inflammation and airway hyperresponsiveness.In addition to adrenergic and cholinergic innervation,bronchial asthma is also regulated by non-adrenergic non-cholinergic nervous system.As a non-adrenergic non-cholinergic nerve medium,vasoactive intestinal peptide has many biological functions,such as anti-inflammatory and anti-oxidation.It plays an important role in airway hyperresponsiveness,airway inflammation and airway remodeling.

14.
Oncotarget ; 8(26): 42728-42741, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28473666

RESUMO

VPAC1 is class B G protein-coupled receptors (GPCR) shared by pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). The first cysteine (Cys37) in the N-terminal extracellular domain of mature VPAC1 is a free Cys not involved in the formation of conserved intramolecular disulfide bonds. In order to investigate the biological role of this Cys37 in VPAC1, the wild-type VPAC1 and Cys37/Ala mutant (VPAC1-C37/A) were expressed stably as fusion proteins with enhanced yellow fluorescent protein (EYFP) respectively in Chinese hamster ovary (CHO) cells. Both VPAC1-EYFP and VPAC1-C37/A-EYFP trafficked to the plasma membrane normally, and CHO cells expressing VPAC1-EYFP displayed higher anti-apoptotic activity against camptothecin (CPT) induced apoptosis than the cells expressing VPAC1-C37/A-EYFP, while VPAC1-C37/A-CHO cells showed higher proliferative activity than VPAC1-CHO cells. Confocal microscopic analysis, western blotting and fluorescence quantification assay showed VPAC1-EYFP displayed significant nuclear translocation while VPAC1-C37/A-EYFP did not transfer into nucleus under the stimulation of VIP (0.1 nM). Acyl-biotin exchange assay and click chemistry-based palmitoylation assay confirmed for the first time the palmitoylation of Cys37, which has been predicted by bioinformatics analysis. And the palmitoylation inhibitor 2-bromopalmitate significantly inhibited the nuclear translocation of VPAC1-EYFP and its anti-apoptotic activity synchronously. These results indicated the palmitoylation of the Cys37 in the N-terminal extracellular domain of VPAC1 mediates the nuclear translocation of VPAC1 contributing to its anti-apoptotic activity. These findings reveal for the first time the lipidation-mediating nuclear translocation of VPAC1 produces a novel anti-apoptotic signal pathway, which may help to promote new drug development strategy targeting VPAC1.


Assuntos
Cisteína/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Apoptose/fisiologia , Células CHO , Células Cultivadas , Cricetulus , Lipoilação , Transfecção
15.
Int J Ophthalmol ; 10(2): 211-216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28251078

RESUMO

AIM: To investigate the role of vasoactive intestinal peptide (VIP) in form-deprivation myopia (FDM). METHODS: FDM was created in three groups of eight chicks by placing a translucent diffuser on their right eyes. Intravitreal injections of saline and VIP were applied once a day into the occluded eyes of groups 2 and 3, respectively. Retinoscopy and axial length (AL) measurements were performed on the first and 8th days of diffuser wear. The retina mRNA levels of the VIP receptors and the ZENK protein in right eyes of the three groups and left eyes of the first group on day 8 were determined using real time polymerase chain reaction (PCR). RESULTS: The median final refraction (D) in right eyes were -13.75 (-16.00, -12.00), -11.50 (-12.50, -7.50), and -1.50 (-4.75, -0.75) in groups 1, 2, and 3, respectively (P<0.001). The median AL (mm) in right eyes were 10.65 (10.00, 11.10), 9.90 (9.70, 10.00), and 9.20 (9.15, 9.25) in groups 1, 2, and 3, respectively (P<0.001). The median delta-delta cycle threshold (CT) values for the VIP2 receptors were 1.07 (0.82, 1.43), 1.22 (0.98, 1.65), 0.29 (0.22, 0.45) in right eyes of groups 1, 2, and 3, and 1.18 (0.90, 1.37) in left eyes of group 1, respectively (P=0.001). The median delta-delta CT values for the ZENK protein were 1.07 (0.63, 5.03), 3.55 (2.20, 5.55), undetectable in right eyes of groups 1, 2, and 3 and 1.89 (0.21, 4.73) in left eyes of group 1, respectively (P=0.001). CONCLUSION: VIP has potential inhibitory effects in the development of FDM.

16.
Nutr Metab Cardiovasc Dis ; 26(2): 109-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712708

RESUMO

BACKGROUND AND AIMS: In a previous study, the single-nucleotide polymorphism (SNP) rs9677, mapped in the 3'-UTR of vasoactive intestinal peptide receptor 1 (VPAC1) gene, was found to be associated with type 2 diabetes (T2D) in Caucasian women. Moreover, the CC genotype correlated with a worse glycolipid profile. The objectives of this study were to confirm this correlation and assess the prevalence of coronary artery disease (CAD) in the previously investigated diabetic women after a follow-up of 4.6 years. METHODS AND RESULTS: A total of 143 women with T2D, with 53 carrying the CC genotype (age: 71.7 ± 7.4 years, diabetes duration: 17.2 ± 9.9 years) and 90 carrying the CT + TT genotypes (age: 69.4 ± 8.8 years, diabetes duration: 14.3 ± 8.2 years), were followed up for 4.6 ± 1.8 years. At follow-up, the clinical and haematochemical parameters were analysed. Twelve-lead electrocardiography, Doppler echocardiography and the percentage of patients with acute myocardial infarction (AMI) or of those subjected to coronary angioplasty and coronary artery bypass surgery were evaluated. At follow-up, there was no significant difference in terms of the clinical and haematochemical parameters between the two groups. However, despite a significantly increased use of statin therapy, no significant improvement in the LDL cholesterol levels was observed in CC female patients unlike those with CT + TT (P = 0.02). Moreover, the CC female patients presented a significantly higher percentage of echocardiographic abnormalities (P = 0.035), especially left ventricular (LV) diastolic dysfunction (P = 0.04). CONCLUSIONS: The rs9677 CC genotype could be correlated with a reduced response to statin therapy and seems to be involved in diabetes cardiomyopathy in female patients with T2D.


Assuntos
LDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/genética , Dislipidemias/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Regiões 3' não Traduzidas , Idoso , Angioplastia Coronária com Balão , Biomarcadores/sangue , Ponte de Artéria Coronária , Doença da Artéria Coronariana/etnologia , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnologia , Angiopatias Diabéticas/etnologia , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/etnologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/terapia , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/etnologia , Ecocardiografia Doppler , Eletrocardiografia , Feminino , Seguimentos , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Itália/epidemiologia , Pessoa de Meia-Idade , Infarto do Miocárdio/etnologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Fenótipo , Prevalência , Fatores de Risco , Fatores de Tempo , Disfunção Ventricular Esquerda/etnologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , População Branca/genética
17.
Gene ; 534(1): 100-6, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24095776

RESUMO

Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 7/genética , Criança , Deficiências do Desenvolvimento/genética , Humanos , Lactente , Deficiência Intelectual , Masculino , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Irmãos , Síndrome
18.
Gene ; 536(2): 441-3, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24334122

RESUMO

BACKGROUND: Down syndrome (DS) is the most common aneuploidy in live-born individuals and it is well recognized with various phenotypic expressions. Although an extra chromosome 21 is the genetic cause for DS, specific phenotypic features may result from the duplication of smaller regions of the chromosome and more studies need to define genotypic and phenotypic correlations. CASE REPORT: We report on a 26 year old male with partial trisomy 21 presenting mild clinical symptoms relative to DS including borderline intellectual disability. In particular, the face and the presence of hypotonia and keratoconus were suggestive for the DS although the condition remained unnoticed until his adult age array comparative genomic hybridization (aCGH) revealed a 10.1 Mb duplication in 21q22.13q22.3 and a small deletion of 2.2 Mb on chromosomal band 7q36 arising from a paternal translocation t(7;21). The 21q duplication encompasses the gene DYRK1. CONCLUSION: Our data support the evidence of specific regions on distal 21q whose duplication results in phenotypes recalling the typical DS face. Although the duplication region contains DYRK1, which has previously been implicated in the causation of DS, our patient has a borderline IQ confirming that their duplication is not sufficient to cause the full DS phenotype.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Trissomia/genética , Adulto , Estudos de Associação Genética/métodos , Humanos , Masculino , Translocação Genética/genética
19.
Gene ; 526(2): 122-33, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23685280

RESUMO

Saccoglossus kowalevskii (the acorn worm) is a hemichordate belonging to the superphylum of deuterostome bilateral animals. Hemichordates are sister group to echinoderms, and closely related to chordates. S. kowalevskii has chordate like morphological traits and serves as an important model organism, helping developmental biologists to understand the evolution of the central nervous system (CNS). Despite being such an important model organism, the signalling system repertoire of the largest family of integral transmembrane receptor proteins, G protein-coupled receptors (GPCRs) is largely unknown in S. kowalevskii. Here, we identified 260 unique GPCRs and classified as many as 257 of them into five main mammalian GPCR families; Glutamate (23), Rhodopsin (212), Adhesion (18), Frizzled (3) and Secretin (1). Despite having a diffuse nervous system, the acorn worm contains well conserved orthologues for human Adhesion and Glutamate family members, with a similar N-terminal domain architecture. This is particularly true for genes involved in CNS development and regulation in vertebrates. The average sequence identity between the GPCR orthologues in human and S. kowalevskii is around 47%, and this is same as observed in couple of the closest vertebrate relatives, Ciona intestinalis (41%) and Branchiostoma floridae (~47%). The Rhodopsin family has fewer members than vertebrates and lacks clear homologues for 6 of the 13 subgroups, including olfactory, chemokine, prostaglandin, purine, melanocyte concentrating hormone receptors and MAS-related receptors. However, the peptide and somatostatin binding receptors have expanded locally in the acorn worm. Overall, this study is the first large scale analysis of a major signalling gene superfamily in the hemichordate lineage. The establishment of orthologue relationships with genes involved in neurotransmission and development of the CNS in vertebrates provides a foundation for understanding the evolution of signal transduction and allows for further investigation of the hemichordate neurobiology.


Assuntos
Cordados não Vertebrados/genética , Receptores Acoplados a Proteínas G/genética , Vertebrados/genética , Animais , Moléculas de Adesão Celular/genética , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Cordados não Vertebrados/metabolismo , Evolução Molecular , Humanos , Filogenia , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/classificação , Receptores de Glutamato/genética , Rodopsina/genética , Rodopsina/metabolismo , Secretina/metabolismo , Vertebrados/metabolismo
20.
J Urol ; 190(2): 746-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23454157

RESUMO

PURPOSE: Because neuronal released endogenous H2S has a key role in relaxation of the bladder outflow region, we investigated the mechanisms involved in H2S dependent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: Bladder neck strips were mounted in myographs for isometric force recording and simultaneous measurement of intracellular Ca(2+) and tension. RESULTS: On phenylephrine contracted preparations electrical field stimulation and the H2S donor GYY4137 evoked frequency and concentration dependent relaxation, which was reduced by desensitizing capsaicin sensitive primary afferents with capsaicin, and the blockade of adenosine 5'-triphosphate dependent K(+) channels, cyclooxygenase and cyclooxygenase-1 with glibenclamide, indomethacin and SC560, respectively. Inhibition of vanilloid, transient receptor potential A1, transient receptor potential vanilloid 1, vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide and calcitonin gene-related peptide receptors with capsazepine, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively, also decreased electrical field stimulation and GYY4137 responses. H2S relaxation was not changed by guanylyl cyclase, protein kinase A, or Ca(2+) activated or voltage gated K(+) channel inhibitors. GYY4137 inhibited the contractions induced by phenylephrine and by K(+) enriched (80 mM) physiological saline solution. To a lesser extent it decreased the phenylephrine and K(+) induced increases in intracellular Ca(2+). CONCLUSIONS: H2S produces pig bladder neck relaxation via activation of adenosine 5'-triphosphate dependent K(+) channel and by smooth muscle intracellular Ca(2+) desensitization dependent mechanisms. H2S also promotes the release of sensory neuropeptides and cyclooxygenase-1 pathway derived prostanoids from capsaicin sensitive primary afferents via transient receptor potential A1, transient receptor potential vanilloid 1 and/or related ion channel activation.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Canais KATP/metabolismo , Músculo Liso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Acetanilidas/farmacologia , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Estimulação Elétrica , Glibureto/farmacologia , Guanilato Ciclase/farmacologia , Indometacina/farmacologia , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Fenilefrina/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...