Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cell Calcium ; 121: 102893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701707

RESUMO

The release of Ca2+ ions from intracellular stores plays a crucial role in many cellular processes, acting as a secondary messenger in various cell types, including cardiomyocytes, smooth muscle cells, hepatocytes, and many others. Detecting and classifying associated local Ca2+ release events is particularly important, as these events provide insight into the mechanisms, interplay, and interdependencies of local Ca2+release events underlying global intracellular Ca2+signaling. However, time-consuming and labor-intensive procedures often complicate analysis, especially with low signal-to-noise ratio imaging data. Here, we present an innovative deep learning-based approach for automatically detecting and classifying local Ca2+ release events. This approach is exemplified with rapid full-frame confocal imaging data recorded in isolated cardiomyocytes. To demonstrate the robustness and accuracy of our method, we first use conventional evaluation methods by comparing the intersection between manual annotations and the segmentation of Ca2+ release events provided by the deep learning method, as well as the annotated and recognized instances of individual events. In addition to these methods, we compare the performance of the proposed model with the annotation of six experts in the field. Our model can recognize more than 75 % of the annotated Ca2+ release events and correctly classify more than 75 %. A key result was that there were no significant differences between the annotations produced by human experts and the result of the proposed deep learning model. We conclude that the proposed approach is a robust and time-saving alternative to conventional full-frame confocal imaging analysis of local intracellular Ca2+ events.


Assuntos
Sinalização do Cálcio , Cálcio , Aprendizado Profundo , Microscopia Confocal , Miócitos Cardíacos , Cálcio/metabolismo , Microscopia Confocal/métodos , Animais , Miócitos Cardíacos/metabolismo , Processamento de Imagem Assistida por Computador/métodos
2.
J Mol Cell Cardiol ; 186: 107-110, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993093

RESUMO

In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two "modes" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Humanos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Acoplamento Excitação-Contração , Arritmias Cardíacas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Biol Direct ; 18(1): 70, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899484

RESUMO

BACKGROUND: The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS: Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 µm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS: Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.


Assuntos
Miócitos Cardíacos , Canais de Cátion TRPM , Ratos , Animais , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , RNA , Ventrículos do Coração/metabolismo , Cátions/metabolismo , Cátions/farmacologia
4.
Microsc Res Tech ; 86(9): 1099-1107, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422907

RESUMO

Patients with long-lasting hypertension often suffer from atrial or ventricular arrhythmias. Evidence suggests that mechanical stimulation can change the refractory period and dispersion of the ventricular myocyte action potential through stretch-activated ion channels (SACs) and influence cellular calcium transients, thus increasing susceptibility to ventricular arrhythmias. However, the specific pathogenesis of hypertension-induced arrhythmias is unknown. In this study, through clinical data, we found that a short-term increase in blood pressure leads to a rise in tachyarrhythmias in patients with clinical hypertension. We investigated the mechanism of this phenomenon using a combined imaging system(AC) of atomic force microscopy (AFM) and laser scanning confocal microscopy. After mechanical distraction to stimulate ventricular myocytes isolated from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), we synchronously monitored cardiomyocyte stiffness and intracellular calcium changes. This method can reasonably simulate cardiomyocytes' mechanics and ion changes when blood pressure rises rapidly. Our results indicated that the stiffness value of cardiomyocytes in SHR was significantly more extensive than that of normal controls, and cardiomyocytes were more sensitive to mechanical stress; In addition, intracellular calcium increased rapidly and briefly in rats with spontaneous hypertension. After intervention with streptomycin, a SAC blocker, ventricular myocytes are significantly less sensitive to mechanical stimuli. Thus, SAC is involved in developing and maintaining ventricular arrhythmias induced by hypertension. The increased stiffness of ventricular myocytes caused by hypertension leads to hypersensitivity of cellular calcium flow to mechanical stimuli is one of the mechanisms that cause arrhythmias. The AC system is a new research method to study the mechanical properties of cardiomyocytes. This study provides new techniques and ideas for developing new anti-arrhythmic drugs. HIGHLIGHT: The mechanism of hypertension-induced tachyarrhythmia is not precise. Through this study, it is found that the biophysical properties of myocardial abnormalities, the myocardium is excessively sensitive to mechanical stimulation, and the calcium flow appears to transient explosive changes, leading to tachyarrhythmia.

5.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272417

RESUMO

Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein-1). Thus, mitochondrial ATP production is increased by bicarbonate-triggered sAC-signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in ventricular cardiomyocytes.


Assuntos
Cálcio , AMP Cíclico , Cálcio/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Adenilil Ciclases/metabolismo , Dióxido de Carbono/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta , Sinalização do Cálcio/fisiologia , Trifosfato de Adenosina/metabolismo
6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111317

RESUMO

Late sodium current (INa,late) is an important inward current contributing to the plateau phase of the action potential (AP) in the mammalian heart. Although INa,late is considered as a possible target for antiarrhythmic agents, several aspects of this current remained hidden. In this work, the profile of INa,late, together with the respective conductance changes (GNa,late), were studied and compared in rabbit, canine, and guinea pig ventricular myocytes using the action potential voltage clamp (APVC) technique. In canine and rabbit myocytes, the density of INa,late was relatively stable during the plateau and decreased only along terminal repolarization of the AP, while GNa,late decreased monotonically. In contrast, INa,late increased monotonically, while GNa,late remained largely unchanged during the AP in guinea pig. The estimated slow inactivation of Na+ channels was much slower in guinea pig than in canine or rabbit myocytes. The characteristics of canine INa,late and GNa,late were not altered by using command APs recorded from rabbit or guinea pig myocytes, indicating that the different shapes of the current profiles are related to genuine interspecies differences in the gating of INa,late. Both INa,late and GNa,late decreased in canine myocytes when the intracellular Ca2+ concentration was reduced either by the extracellular application of 1 µM nisoldipine or by the intracellular application of BAPTA. Finally, a comparison of the INa,late and GNa,late profiles induced by the toxin of Anemonia sulcata (ATX-II) in canine and guinea pig myocytes revealed profound differences between the two species: in dog, the ATX-II induced INa,late and GNa,late showed kinetics similar to those observed with the native current, while in guinea pig, the ATX-II induced GNa,late increased during the AP. Our results show that there are notable interspecies differences in the gating kinetics of INa,late that cannot be explained by differences in AP morphology. These differences must be considered when interpreting the INa,late results obtained in guinea pig.

8.
Front Physiol ; 14: 1106662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846332

RESUMO

A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.

9.
J Biol Chem ; 299(1): 102780, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496071

RESUMO

Ischemia and reperfusion affect multiple elements of cardiomyocyte electrophysiology, especially within the mitochondria. We previously showed that in cardiac monolayers, upon reperfusion after coverslip-induced ischemia, mitochondrial inner membrane potential (ΔΨ) unstably oscillates between polarized and depolarized states, and ΔΨ instability corresponds with arrhythmias. Here, through confocal microscopy of compartment-specific molecular probes, we investigate the mechanisms underlying the postischemic ΔΨ oscillations, focusing on the role of Ca2+ and oxidative stress. During reperfusion, transient ΔΨ depolarizations occurred concurrently with periods of increased mitochondrial oxidative stress (5.07 ± 1.71 oscillations/15 min, N = 100). Supplementing the antioxidant system with GSH monoethyl ester suppressed ΔΨ oscillations (1.84 ± 1.07 oscillations/15 min, N = 119, t test p = 0.027) with 37% of mitochondrial clusters showing no ΔΨ oscillations (versus 4% in control, odds ratio = 14.08, Fisher's exact test p < 0.001). We found that limiting the production of reactive oxygen species using cyanide inhibited postischemic ΔΨ oscillations (N = 15, t test p < 10-5). Furthermore, ΔΨ oscillations were not associated with any discernable pattern in cell-wide oxidative stress or with the changes in cytosolic or mitochondrial Ca2+. Sustained ΔΨ depolarization followed cytosolic and mitochondrial Ca2+ increase and was associated with increased cell-wide oxidative stress. Collectively, these findings suggest that transient bouts of increased mitochondrial oxidative stress underlie postischemic ΔΨ oscillations, regardless of Ca2+ dynamics.


Assuntos
Mitocôndrias Cardíacas , Estresse Oxidativo , Humanos , Cálcio/metabolismo , Isquemia/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reperfusão
10.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499507

RESUMO

Nobiletin (NOB) has attracted much attention owing to its outstanding bioactivities. This study aimed to investigate its anti-arrhythmic effect through electrophysiological and molecular docking studies. We assessed the anti-arrhythmic effects of NOB using aconitine-induced ventricular arrhythmia in a rat model and the electrophysiological effects of NOB on rat cardiomyocytes utilizing whole-cell patch-clamp techniques. Moreover, we investigated the binding characters of NOB with rNav1.5, rNav1.5/QQQ, and hNaV1.5 via docking analysis, comparing them with amiodarone and aconitine. NOB pretreatment delayed susceptibility to ventricular premature and ventricular tachycardia and decreased the incidence of fatal ventricular fibrillation. Whole-cell patch-clamp assays demonstrated that the peak current density of the voltage-gated Na+ channel current was reversibly reduced by NOB in a concentration-dependent manner. The steady-state activation and recovery curves were shifted in the positive direction along the voltage axis, and the steady-state inactivation curve was shifted in the negative direction along the voltage axis, as shown by gating kinetics. The molecular docking study showed NOB formed a π-π stacking interaction with rNav1.5 and rNav1.5/QQQ upon Phe-1762, which is the homolog to Phe-1760 in hNaV1.5 and plays an important role in antiarrhythmic action This study reveals that NOB may act as a class I sodium channel anti-arrhythmia agent.


Assuntos
Antiarrítmicos , Miócitos Cardíacos , Animais , Ratos , Aconitina/metabolismo , Antiarrítmicos/farmacologia , Arritmias Cardíacas/metabolismo , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Sódio/metabolismo , Canais de Sódio/metabolismo
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1359-1366, 2022 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-36210709

RESUMO

OBJECTIVE: To investigate the changes in myocardial calcium currents in rats subjected to forced running exercise during acute hypoxia and their association with myocardial injury. METHODS: Forty SD rats were randomized into quiescent group and running group either in normal oxygen (NQ and NR groups, respectively) or in acute hypoxia (HQ and HR groups, respectively). Hypoxia was induced by keeping the rats in a hypobaric oxygen chamber (PaO2=61.6kpa) for 4 h a day; the rats in the two running groups were forced to run on running wheels for 4 h each day. Rat ventricular myocytes was isolated by enzymatic digestion for recording action potentials and currents using patch clamp technique, and confocal Ca2+ imaging was used to monitor intracellular Ca2+ levels. The expressions of Cav1.2 channel and the cardiac ryanodine receptor (RyR2) were determined using Western blotting. RESULTS: Compared with those in NQ group, the rats in HR group showed significantly decreased SOD activity (P < 0.01), increased h-FABP, hs-CRP and IMA levels (P < 0.05 or 0.01), obvious myocardial pathology, and prolonged APD50 and APD90 (P < 0.05). Of the different stress conditions, forced running in acute hypoxia resulted in the most prominent increase of the densities of ICa, L currents, causing also a significant left shift of the steady state activation curve and a significant right shift of the steady state inactivation curve. Compared with those in NQ group, the rats in NR, HQ and HR groups all exhibited higher rates of spontaneous calcium wave events in the cardiac myocytes, increased frequency of calcium sparks with lowered amplitude, enhanced calcium release amplitude in the ventricular myocytes, and delayed calcium ion reabsorption; in particular, these changes were the most conspicuous in HR group (P < 0.05 or 0.01). There was also a significant increase in the protein levels of Cav1.2 channel and RyR2 receptor in HR group (P < 0.05 or 0.01). CONCLUSIONS: The mechanism of myocardial injury in rats subjected to forced running in acute hypoxia may involve the increase of oxidative stress and calcium current and intracellular calcium overload.


Assuntos
Cálcio , Traumatismos Cardíacos , Animais , Proteína C-Reativa/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteína 3 Ligante de Ácido Graxo/metabolismo , Traumatismos Cardíacos/metabolismo , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Superóxido Dismutase/metabolismo
12.
Eur J Pharmacol ; 933: 175263, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100128

RESUMO

Obesity is an important risk factor for diabetes mellitus (DM) which is a major global health problem. Electro-mechanical dysfunction has been extensively described in diabetic heart and cardiovascular complications are an important cause of mortality and morbidity in diabetic patients. OBJECTIVES: To examine the effects of Isoprenaline (ISO) in obesity and diabesity on ventricular myocyte shortening and Ca2+ transport in Zucker fatty (ZF), Zucker diabetic fatty (ZDF) in comparison to Zucker lean (ZL) rats. METHODS: Myocyte shortening and intracellular Ca2+ were investigated with video imaging and fluorescence photometry, respectively. RESULTS: The amplitude of Isoprenaline stimulated shortening was significantly (p < 0.05) decreased in ZDF and ZF compared to ZL myocytes. The amplitude of Isoprenaline stimulated Ca2+ transient was also significantly (p < 0.05) reduced in ZF compared to ZL and modestly reduced in ZDF compared to ZL myocytes. Mean Isoprenaline stimulated time to peak along with time to half relaxation of shortening were unchanged in ZDF and ZF compared to ZL myocytes. Mean Isoprenaline stimulated time to peak Ca2+ transient was significantly shortened in ZF compared to ZL myocytes. Time to half decay of the Ca2+ transient was considerably prolonged in ZDF compared to ZL myocytes. Amplitude of Isoprenaline stimulated caffeine-evoked Ca2+ transients were significantly reduced in ZDF and ZF in comparison to ZL myocytes. CONCLUSION: Isoprenaline was less effective at generating an increase in the amplitude of shortening in ZDF and ZF in comparison to ZL myocytes and defects in Ca2+ signaling, and in particular SR Ca2+ transport, might partly underlie these abnormalities.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Animais , Cafeína , Isoproterenol/farmacologia , Miócitos Cardíacos/fisiologia , Obesidade , Ratos , Ratos Zucker
13.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1180-1192, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35983978

RESUMO

Celastrol is a quinone methide triterpenoid extracted from the root bark of Tripterygium wilfordii Hook F, and it exhibits extensive biological activities such as anti-cancer effects. However, narrow therapeutic window together with undesired side effects limit its clinical application. In this study, we explore celastrol's cardiotoxicity using the methods of histology and cell biology. The results show that celastrol administration dose-dependently induces cardiac dysfunction in mice as manifested by left ventricular dilation, myocardial interstitial fibrosis, and cardiomyocyte hypertrophy. Exposure to celastrol greatly decreases neonatal rat ventricular myocyte (NRVM) viability and promotes its apoptosis. More importantly, we demonstrate that celastrol exerts its pro-apoptotic effects through endoplasmic reticulum (ER) stress and unfolded protein response. Furthermore, siRNA targeting C/EBP homologous protein, a pivotal component of ER stress-mediated apoptosis, effectively prevents the pro-apoptotic effect of celastrol. Taken together, our results demonstrate the potential cardiotoxicity of celastrol and a direct involvement of ER stress in the celastrol-induced apoptosis of NRVMs. Thus, we recommend careful evaluation of celastrol's cardiovascular effects when using it in the clinic.


Assuntos
Cardiotoxicidade , Triterpenos , Animais , Apoptose , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Estresse do Retículo Endoplasmático , Camundongos , Triterpenos Pentacíclicos/farmacologia , RNA Interferente Pequeno , Ratos , Triterpenos/toxicidade
14.
Life (Basel) ; 12(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013400

RESUMO

(1) Background: Cardiovascular complications are a leading cause of morbidity and mortality in diabetic patients. The effects of obesity and diabesity on the function and structure of ventricular myocytes in the Zucker fatty (ZF) rat and the Zucker diabetic fatty (ZDF) rat compared to Zucker lean (ZL) control rats have been investigated. (2) Methods: Shortening and intracellular Ca2+ were simultaneously measured with cell imaging and fluorescence photometry, respectively. Ventricular muscle protein expression and structure were investigated with Western blot and electron microscopy, respectively. (3) Results: The amplitude of shortening was increased in ZF compared to ZL but not compared to ZDF myocytes. Resting Ca2+ was increased in ZDF compared to ZL myocytes. Time to half decay of the Ca2+ transient was prolonged in ZDF compared to ZL and was reduced in ZF compared to ZL myocytes. Changes in expression of proteins associated with cardiac muscle contraction are presented. Structurally, there were reductions in sarcomere length in ZDF and ZF compared to ZL and reductions in mitochondria count in ZF compared to ZDF and ZL myocytes. (4) Conclusions: Alterations in ventricular muscle proteins and structure may partly underlie the defects observed in Ca2+ signaling in ZDF and ZF compared to ZL rat hearts.

15.
Methods Mol Biol ; 2483: 195-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286677

RESUMO

The ubiquitous second messengers' 3',5'-cyclic adenosine monophosphate (cAMP ) and 3',5'-cyclic guanosine monophosphate (cGMP) are crucial in regulating cardiomyocyte function, as well as pathological processes, by acting in distinct subcellular microdomains and thus controlling excitation-contraction coupling. Spatio-temporal intracellular dynamics of cyclic nucleotides can be measured in living cells using fluorescence resonance energy transfer (FRET ) by transducing isolated cells with genetically encoded biosensors. While FRET experiments have been regularly performed in cardiomyocytes from different animal models, human-based translational experiments are very challenging due to the difficulty to culture and transduce adult human cardiomyocytes. Here, we describe a technique for obtaining human atrial and ventricular myocytes which allows to keep them alive in culture long enough to transduce them and visualize cAMP and cGMP in physiological and pathological human settings.


Assuntos
Miócitos Cardíacos , Nucleotídeos Cíclicos , Animais , AMP Cíclico , GMP Cíclico , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
16.
Front Pharmacol ; 13: 821758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185573

RESUMO

Cannabidiol (CBD), a major non-psychotropic cannabinoid found in the Cannabis plant, has been shown to exert anti-nociceptive, anti-psychotic, and anti-convulsant effects and to also influence the cardiovascular system. In this study, the effects of CBD on major ion currents were investigated using the patch-clamp technique in rabbit ventricular myocytes. CBD inhibited voltage-gated Na+ and Ca2+ channels with IC50 values of 5.4 and 4.8 µM, respectively. In addition, CBD, at lower concentrations, suppressed ion currents mediated by rapidly and slowly activated delayed rectifier K+ channels with IC50 of 2.4 and 2.1 µM, respectively. CBD, up to 10 µM, did not have any significant effect on inward rectifier I K1 and transient outward I to currents. The effects of CBD on these currents developed gradually, reaching steady-state levels within 5-8 min, and recoveries were usually slow and partial. Hill coefficients higher than unity in concentration-inhibition curves suggested multiple CBD binding sites on these channels. These findings indicate that CBD affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when CBD is administered to carriers of cardiac channelopathies or to individuals using drugs known to affect the rhythm or the contractility of the heart.

17.
Front Physiol ; 12: 672360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867432

RESUMO

Cardiac arrhythmias significantly contribute to cardiovascular morbidity and mortality. The rabbit heart serves as an accepted model system for studying cardiac cell excitation and arrhythmogenicity. Accordingly, primary cultures of adult rabbit ventricular cardiomyocytes serve as a preferable model to study molecular mechanisms of human cardiac excitation. However, the use of adult rabbit cardiomyocytes is often regarded as excessively costly. Therefore, we developed and characterized a novel low-cost rabbit cardiomyocyte model, namely, 3-week-old ventricular cardiomyocytes (3wRbCMs). Ventricular myocytes were isolated from whole ventricles of 3-week-old New Zealand White rabbits of both sexes by standard enzymatic techniques. Using wheat germ agglutinin, we found a clear T-tubule structure in acutely isolated 3wRbCMs. Cells were adenovirally infected (multiplicity of infection of 10) to express Green Fluorescent Protein (GFP) and cultured for 48 h. The cells showed action potential duration (APD90 = 253 ± 24 ms) and calcium transients similar to adult rabbit cardiomyocytes. Freshly isolated and 48-h-old-cultured cells expressed critical ion channel proteins: calcium voltage-gated channel subunit alpha1 C (Cavα1c), sodium voltage-gated channel alpha subunit 5 (Nav1.5), potassium voltage-gated channel subfamily D member 3 (Kv4.3), and subfamily A member 4 (Kv1.4), and also subfamily H member 2 (RERG. Kv11.1), KvLQT1 (K7.1) protein and inward-rectifier potassium channel (Kir2.1). The cells displayed an appropriate electrophysiological phenotype, including fast sodium current (I Na), transient outward potassium current (I to), L-type calcium channel peak current (I Ca,L), rapid and slow components of the delayed rectifier potassium current (I Kr and I Ks), and inward rectifier (I K1). Although expression of the channel proteins and some currents decreased during the 48 h of culturing, we conclude that 3wRbCMs are a new, low-cost alternative to the adult-rabbit-cardiomyocytes system, which allows the investigation of molecular mechanisms of cardiac excitation on morphological, biochemical, genetic, physiological, and biophysical levels.

18.
Acta Pharm Sin B ; 11(11): 3553-3566, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900536

RESUMO

Rescuing cells from stress damage emerges a potential therapeutic strategy to combat myocardial infarction. Protocatechuic aldehyde (PCA) is a major phenolic acid in Chinese herb Danshen (Salvia miltiorrhiza root). This study investigated whether PCA regulated nuclear pyruvate kinase isoform M2 (PKM2) function to protect cardiomyocytes. In rats subjected to isoprenaline, PCA attenuated heart injury and protected cardiomyocytes from apoptosis. Through DARTS and CETSA assays, we identified that PCA bound and promoted PKM2 nuclear translocation in cardiomyocytes exposed to oxygen/glucose deprivation (OGD). In the nucleus, PCA increased the binding of PKM2 to ß-catenin via preserving PKM2 acetylation, and the complex, in cooperation with T-cell factor 4 (TCF4), was required for transcriptional induction of genes encoding anti-apoptotic proteins, contributing to rescuing cardiomyocyte survival. In addition, PCA ameliorated mitochondrial dysfunction and prevented mitochondrial apoptosis dependent on PKM2. Consistently, PCA increased the binding of PKM2 to ß-catenin, improved heart contractive function, normalized heart structure and attenuated oxidative damage in mice subjected to artery ligation, but the protective effects were lost in Pkm2-deficient heart. Together, we showed that PCA regulated nuclear PKM2 function to rescue cardiomyocyte survival via ß-catenin/TCF4 signaling cascade, suggesting the potential of pharmacological intervention of PKM2 shuttle to protect the heart.

19.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681909

RESUMO

In the heart, the delayed rectifier K current, IK, composed of the rapid (IKr) and slow (IKs) components contributes prominently to normal cardiac repolarization. In lipotoxicity, chronic elevation of pro-inflammatory cytokines may remodel IK, elevating the risk for ventricular arrythmias and sudden cardiac death. We investigated whether and how the pro-inflammatory interleukin-6 altered IK in the heart, using electrophysiology to evaluate changes in IK in adult guinea pig ventricular myocytes. We found that palmitic acid (a potent inducer of lipotoxicity), induced a rapid (~24 h) and significant increase in IL-6 in RAW264.7 cells. PA-diet fed guinea pigs displayed a severely prolonged QT interval when compared to low-fat diet fed controls. Exposure to isoproterenol induced torsade de pointes, and ventricular fibrillation in lipotoxic guinea pigs. Pre-exposure to IL-6 with the soluble IL-6 receptor produced a profound depression of IKr and IKs densities, prolonged action potential duration, and impaired mitochondrial ATP production. Only with the inhibition of IKr did a proarrhythmic phenotype of IKs depression emerge, manifested as a further prolongation of action potential duration and QT interval. Our data offer unique mechanistic insights with implications for pathological QT interval in patients and vulnerability to fatal arrhythmias.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Interleucina-6/metabolismo , Síndrome do QT Longo/patologia , Macrófagos/metabolismo , Miócitos Cardíacos/patologia , Canais de Potássio/química , Animais , Arritmias Cardíacas/metabolismo , Cardiotoxicidade/fisiopatologia , Feminino , Cobaias , Ativação do Canal Iônico , Metabolismo dos Lipídeos , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo
20.
Physiol Rep ; 9(17): e15015, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34514737

RESUMO

Compartmentation of cAMP signaling is a critical factor for maintaining the integrity of receptor-specific responses in cardiac myocytes. This phenomenon relies on various factors limiting cAMP diffusion. Our previous work in adult rat ventricular myocytes (ARVMs) indicates that PKA regulatory subunits anchored to the outer membrane of mitochondria play a key role in buffering the movement of cytosolic cAMP. PKA can be targeted to discrete subcellular locations through the interaction of both type I and type II regulatory subunits with A-kinase anchoring proteins (AKAPs). The purpose of this study is to identify which AKAPs and PKA regulatory subunit isoforms are associated with mitochondria in ARVMs. Quantitative PCR data demonstrate that mRNA for dual specific AKAP1 and 2 (D-AKAP1 & D-AKAP2), acyl-CoA-binding domain-containing 3 (ACBD3), optic atrophy 1 (OPA1) are most abundant, while Rab32, WAVE-1, and sphingosine kinase type 1 interacting protein (SPHKAP) were barely detectable. Biochemical and immunocytochemical analysis suggests that D-AKAP1, D-AKAP2, and ACBD3 are the predominant mitochondrial AKAPs exposed to the cytosolic compartment in these cells. Furthermore, we show that both type I and type II regulatory subunits of PKA are associated with mitochondria. Taken together, these data suggest that D-AKAP1, D-AKAP2, and ACBD3 may be responsible for tethering both type I and type II PKA regulatory subunits to the outer mitochondrial membrane in ARVMs. In addition to regulating PKA-dependent mitochondrial function, these AKAPs may play an important role by buffering the movement of cAMP necessary for compartmentation.


Assuntos
Proteínas de Ancoragem à Quinase A/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Ventrículos do Coração/enzimologia , Mitocôndrias/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...