Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628913

RESUMO

Species distribution and resource utilization are a fundamental aspect of ecology. By analyzing the tree space usage by birds and determining the species composition of birds across different parts of trees, our study could shed light on the mechanisms shaping co-occurrence patterns in bird communities. Therefore, our study aimed to determine the species composition of birds across different parts of trees. We investigated whether species richness differs between positions on a tree and how these positions influence the probability of occurrence of the 10 most frequently observed bird species. To achieve this, we observed birds within permanent plots in Bialowieza National Park (BNP) and analyzed the distribution patterns of birds within six vertical and three horizontal sectors of trees. The compositional dissimilarity between tree sectors was assessed using detrended correspondence analysis. We employed generalized linear mixed-effects models to examine differences in species richness. The majority of the BNP bird community was associated with the branches, while other birds occupied the tree crown trunks and the understory trunks. Species richness was the highest on branches in the crown part of trees, followed by lower species richness on trunks associated with crowns, and the lowest richness was observed on branches and trunks in the understory. These results indicate that branches in the middle and lower parts of the crown serve as avian diversity hotspots on trees, likely due to the abundance of various food sources. The differing patterns of tree usage by specific bird species may suggest the avoidance of interspecific competition for resources. The study results of tree usage by bird species obtained in the primeval forest provides a reference point for studies conducted in human-altered woods.

2.
Neotrop Entomol ; 53(3): 596-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687424

RESUMO

Anthropogenic activities have decimated the Atlantic Forest domain (AF) and increased the pressure on freshwater biota, such as Trichoptera, which is the most affected order by the current insect decline. Adult mobility is crucial for the colonisation of new environments unconnected by water sources. In this article, we describe the assemblage of caddisflies in a preserved AF fragment related to their functional feeding group and provide empirical data on the patterns of horizontal and vertical flight. Adults were collected using white sheet and light attraction traps, placed at different distances and heights from a stream in Pernambuco, Brazil. A total of 2934 specimens of 15 species from five families were collected, mostly collector-filterers. Horizontal flight was limited, with 80% of the abundance concentrated up to 20 m. Vertical stratification was also concentrated at lower heights. A female-biased proportion was observed at higher strata. The richness and abundance of species decreased with increasing distances and heights from the stream. Overall, Chimarra sp. and Macrostemum scharfi were the dominant species. Trichoptera is a key taxon used as a biological indicator of water quality, and here, knowledge on the diversity and flight patterns of adults is expanded. At the risk of intensive pollution of rivers in Atlantic forests, data on the adult dispersal can be incorporated in the assessment of endangerment status and in conservation strategies.


Assuntos
Biodiversidade , Florestas , Animais , Brasil , Feminino , Masculino , Voo Animal , Ecossistema , Conservação dos Recursos Naturais , Insetos
3.
Braz. j. biol ; 84: e253598, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355857

RESUMO

Abstract Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees are widely distributed throughout the Cerrado ecosystem. The fruits of C. brasiliense trees are used by humans for food and as the main income source in many communities. C. brasiliense conservation is seriously threatened due to habitat loss caused by the land-use change. Sucking insects constitute an important ecological driver that potentially impact C. brasiliense survival in degraded environments. In addition, insects sampling methodologies for application in studies related to the conservation of C. brasiliense are poorly developed. In this study, sucking insects (Hemiptera) and their predators were recorded in three vertical strata of Caryocar brasiliense canopies. The distribution of sucking species showed vertical stratification along the canopy structure of C. brasiliense. The basal part of the canopy had the highest numbers of sucking insects Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) and Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), and their predators Chrysoperla sp. (Neuroptera: Chrysopidae), spiders (Araneae), and Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Predators' distribution follows the resource availability and preferred C. brasiliense tree parts with a higher abundance of prey.


Resumo Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) é amplamente distribuído por todo o ecossistema de cerrado. Os frutos de C. brasiliense são utilizados na alimentação humana e constitui uma importante fonte de renda para muitas comunidades. A perda de habitat provocada pelas mudanças de uso da terra coloca em risco a conservação de C. brasiliense. Insetos sugadores constituem um importante fator ecológico que, potencialmente, afeta o fitness de C. brasiliense em ambientes degradados. Além disso, as metodologias de amostragem de insetos para aplicação em estudos relacionados à conservação de C. brasiliense são pouco desenvolvidas. Neste estudo, o número de insetos sugadores (Hemiptera) e seus predadores foram avaliados em três estratos verticais do dossel de C. brasiliense. A distribuição das espécies sugadoras apresentou estratificação vertical ao longo da estrutura do dossel. O estrato basal do dossel apresentou o maior número de insetos sugadores Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) e Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), e seus predadores Chrysoperla sp. (Neuroptera: Chrysopidae), aranhas (Araneae) e Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Os predadores distribuíram-se de acordo com a disponibilidade de recursos, ocorrendo em maior número nas partes do dossel com maior abundância de suas presas.


Assuntos
Humanos , Animais , Afídeos , Malpighiales , Árvores , Ecossistema , Insetos
4.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469324

RESUMO

Abstract Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees are widely distributed throughout the Cerrado ecosystem. The fruits of C. brasiliense trees are used by humans for food and as the main income source in many communities. C. brasiliense conservation is seriously threatened due to habitat loss caused by the land-use change. Sucking insects constitute an important ecological driver that potentially impact C. brasiliense survival in degraded environments. In addition, insects sampling methodologies for application in studies related to the conservation of C. brasiliense are poorly developed. In this study, sucking insects (Hemiptera) and their predators were recorded in three vertical strata of Caryocar brasiliense canopies. The distribution of sucking species showed vertical stratification along the canopy structure of C. brasiliense. The basal part of the canopy had the highest numbers of sucking insects Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) and Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), and their predators Chrysoperla sp. (Neuroptera: Chrysopidae), spiders (Araneae), and Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Predators' distribution follows the resource availability and preferred C. brasiliense tree parts with a higher abundance of prey.


Resumo Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) é amplamente distribuído por todo o ecossistema de cerrado. Os frutos de C. brasiliense são utilizados na alimentação humana e constitui uma importante fonte de renda para muitas comunidades. A perda de habitat provocada pelas mudanças de uso da terra coloca em risco a conservação de C. brasiliense. Insetos sugadores constituem um importante fator ecológico que, potencialmente, afeta o fitness de C. brasiliense em ambientes degradados. Além disso, as metodologias de amostragem de insetos para aplicação em estudos relacionados à conservação de C. brasiliense são pouco desenvolvidas. Neste estudo, o número de insetos sugadores (Hemiptera) e seus predadores foram avaliados em três estratos verticais do dossel de C. brasiliense. A distribuição das espécies sugadoras apresentou estratificação vertical ao longo da estrutura do dossel. O estrato basal do dossel apresentou o maior número de insetos sugadores Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) e Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), e seus predadores Chrysoperla sp. (Neuroptera: Chrysopidae), aranhas (Araneae) e Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Os predadores distribuíram-se de acordo com a disponibilidade de recursos, ocorrendo em maior número nas partes do dossel com maior abundância de suas presas.

5.
Environ Pollut ; 335: 122256, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506805

RESUMO

Microcystis, one of the common cyanobacteria, often causes blooms in reservoirs, which has seriously threatened the safety of drinking water worldwide. To identify the growth characteristic of total and microcystin-producing Microcystis in large deep reservoirs, we used Quantitative PCR (qPCR) to measure the cell density of total and microcystin-producing Microcystis and monitored water quality in the water samples collected in Dongzhang Reservoir once a month. Microcystis blooms occurred in Dongzhang Reservoir in April 2017, which was composed of microcystin-producing and non-microcystin-producing Microcystis. Water temperature, dissolved oxygen, pH, and chlorophyll-a showed significant vertical stratification during Microcystis blooms. Total and microcystin-producing Microcystis grew rapidly under the high concentration of total phosphorus and rising water temperatures. Nitrate-nitrogen had a significant linear correlation with the abundance of microcystin-producing Microcystis. Our results indicated that nutrients and water temperature could be key triggers of Microcystis blooms and nitrate-nitrogen potentially regulates the competition between microcystin-producing and non-microcystin-producing Microcystis. This study improves our understanding of the characteristics of Microcystis blooms and the competition between microcystin-producing and non-microcystin-producing Microcystis in large deep reservoirs.


Assuntos
Cianobactérias , Microcystis , Nitratos , Microcistinas/análise , Clorofila A , Nitrogênio/análise
6.
J Anim Ecol ; 92(3): 538-551, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622247

RESUMO

Climatic gradients such as latitude and elevation are considered primary drivers of global biogeography. Yet, alongside these macro-gradients, the vertical space and structure generated by terrestrial plants form comparable climatic gradients but at a fraction of the distance. These vertical gradients provide a spectrum of ecological space for species to occur and coexist, increasing biodiversity. Furthermore, vertical gradients can serve as pathways for evolutionary adaptation of species traits, leading to a range of ecological specialisations. In this review, we explore the ecological evidence supporting the proposition that the vertical gradient serves as an engine driving the ecology and evolution of species and shaping larger biogeographical patterns in space and time akin to elevation and latitude. Focusing on vertebrate and invertebrate taxa, we synthesised how ecological patterns within the vertical dimension shape species composition, distribution and biotic interactions. We identify three key ecological mechanisms associated with species traits that facilitate persistence within the vertical environment and draw on empirical examples from the literature to explore these processes. Looking forward, we propose that the vertical dimension provides an excellent study template to explore timely ecological and evolutionary questions. We encourage future research to also consider how the vertical dimension will influence the resilience and response of animal taxa to global change.


Assuntos
Biodiversidade , Ecossistema , Animais , Dimensão Vertical , Plantas , Aclimatação
7.
Oecologia ; 201(1): 199-212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36520222

RESUMO

There is often a vertical stratification of the vegetation in tropical forests, where each forest stratum has a unique set of environmental conditions, including marked differences in habitat heterogeneity, physical complexity, and microclimate. Additionally, many tropical forests are highly seasonal, and we need to consider the temporal variation in environmental conditions when assessing the functional aspects of their organisms. Here, we tested the hypothesis that vertical stratification and seasonality shape tropical ants' functional ecology and that there are differences in the functional trait diversity and composition between arboreal and ground-dwelling ant communities. We collected ants in the arboreal and ground strata in the rainy and dry seasons in six different areas, measuring seven morphological traits to characterize their functional ecology and diversity. Irrespective of the season, we found a distinct functional composition between arboreal and ground-dwelling ants and a higher functional richness on the ground. However, ground ants were more functionally redundant than arboreal ants. The differences in functional richness and redundancy between ant inhabiting strata and season could also be observed in the community-weighted mean traits: arboreal and ground ant traits can be distinguished in Weber's length, mandible length, eye length, and eye position on the head capsule. The differences in these functional traits are mainly related to the ants' feeding habits and the complexity of their foraging substrates. Overall, by providing the first systematic comparison of continuous traits between arboreal and ground-dwelling ants, our study opens new investigation paths, indicating important axes of functional diversification of tropical ants.


Assuntos
Formigas , Árvores , Animais , Clima Tropical , Ecossistema , Florestas
8.
Ecol Evol ; 12(8): e9158, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919394

RESUMO

Abiotic and biotic factors structure species assembly in ecosystems both horizontally and vertically. However, the way community composition changes along comparable horizontal and vertical distances in complex three-dimensional habitats, and the factors driving these patterns, remains poorly understood. By sampling ant assemblages at comparable vertical and horizontal spatial scales in a tropical rainforest, we tested hypotheses that predicted differences in vertical and horizontal turnover explained by different drivers in vertical and horizontal space. These drivers included environmental filtering, such as microclimate (temperature, humidity, and photosynthetic photon flux density) and microhabitat connectivity (leaf area), which are structured differently across vertical and horizontal space. We found that both ant abundance and richness decreased significantly with increasing vertical height. Although the dissimilarity between ant assemblages increased with vertical distance, indicating a clear distance-decay pattern, the dissimilarity was higher horizontally where it appeared independent of distance. The pronounced horizontal and vertical structuring of ant assemblages across short distances is likely explained by a combination of microclimate and microhabitat connectivity. Our results demonstrate the importance of considering three-dimensional spatial variation in local assemblages and reveal how highly diverse communities can be supported by complex habitats.

9.
Ecology ; 103(6): e3681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315513

RESUMO

The study of community spatial structure is central to understanding diversity patterns over space and species co-occurrence at local scales. Although most analytical approaches consider horizontal and vertical dimensions separately, in this study we introduce a three-dimensional spatial analysis that simultaneously includes horizontal and vertical species associations. Using tree census data (2000-2016) and allometries from the Luquillo forest plot in Puerto Rico, we show that spatial organization becomes less random over time as the forest recovered from land-use legacy effects and hurricane disturbance. Tree species vertical segregation is predominant in the forest with almost all species that co-occur in the horizontal plane avoiding each other in the vertical dimension. Horizontal segregation is less common than vertical, whereas three-dimensional aggregation (a proxy for direct tree competition) is the least frequent type of spatial association. Furthermore, dominant species are involved in more non-random spatial associations, implying that species co-occurrence is facilitated by species segregation in space. This novel three-dimensional analysis allowed us to identify and quantify tree species spatial distributions, how interspecific competition was reduced through forest structure, and how it changed over time after disturbance, in ways not detectable from two-dimensional analyses alone.


Assuntos
Tempestades Ciclônicas , Ecossistema , Florestas , Porto Rico , Árvores
10.
Hydrobiologia ; 849(5): 1301-1312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125510

RESUMO

A new approach for visual fish survey in reservoirs using underwater drones (remotely operated vehicle- ROV) is presented. The ROV was applied to identify abiotic gradients and to compare fish assemblages on the steep slopes in a tropical reservoir. The tested hypothesis is that fish are concentrated in the littoral zone due to the better physicochemical and habitat conditions, compared to deep and hypoxic layers. Twelve species were recorded (seven native, five exotic), with all species occurring in the littoral zone, seven species in the transition, and four in the profundal zone. A greater fish abundance and richness was found in the littoral zone corroborating the main hypothesis. The littoral zone was dominated by exotic cichlids (Cichla spp., Coptodon rendalli), while native catfish (Loricariichthys castaneus, Pimelodella lateristriga) occupied deeper areas. The fish distribution seems to be driven by local factors, such as oxygen availability and habitat structure. The preference for the littoral zone by alien cichlids may have led to the extirpation/decrease of native characids and induced catfishes to occupy deep habitats. Underwater drones can be a valuable tool for the simultaneous collection of abiotic/biotic data, especially in deep reservoirs with complex habitats, resulting in advances in the environmental monitoring. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10750-021-04790-9.

11.
Ecol Evol ; 12(2): e8497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222943

RESUMO

Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.

12.
Ecol Lett ; 25(4): 729-739, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34958165

RESUMO

Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.


Assuntos
Herbivoria , Árvores , Animais , Florestas , Insetos , Folhas de Planta , Comportamento Predatório
13.
Water Res ; 209: 117963, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933159

RESUMO

Particulate organic carbon (POC) is an important component of lake organic carbon (C) pools, of which different factors drive vertical distributions and sources. This study used the dual stable isotope (δ13C and δ15N) approach to investigate vertical POC sources and drivers in a large floodplain lake system. Findings showed that POC composition gradually changed from endogenous dominant to exogenous dominant sequentially from the surface layer to the bottom layer of Lake Poyang. Environmental factors associated with phytoplankton photosynthesis as well as nutrient levels primarily drove surface POC. Moreover, soil erosion, sediment deposition, and resuspension strongly affected POC distribution and composition in the middle and bottom layers of the lake. POC sources were also affected by factors associated with vertical mixing, such as wind speed and water depth. Litter from C3 plants significantly contributed to POC concentrations in the middle and bottom layers of the lake. Results from this study can benefit our overall understanding of the potential driving mechanisms of lake C cycling processes, aquatic ecosystem functions, and pollutant migration.

14.
Rev. biol. trop ; 69(4)dic. 2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387698

RESUMO

Abstract Introduction: Despite growing interest by the ecosystems derived from the Guyanese formations, the vertical structure of the communities and relationships of the biota with the climatic conditions in these ecosystems are unknown. Objective: Characterize the structure and vertical composition of the arthropod fauna associated with three of the most representative ecosystems of the Northern area of the serranía de La Lindosa in Colombia based on morphological and ecological parameters. Methods: The arthropod fauna was sampled, from the subsurface soil level to the shrub and tree stratum. The fauna was determined up to the level of family or supraspecific group and the values of Alfa and Beta diversity were determined. Body length measurements were made, and the coloration and trophic level of each group were determined. Results: The composition and diversity of the arthropod fauna was different in each ecosystem and vertical stratum and most of the groups in all the ecosystems studied present low abundances. Groups of phytophagous and predatory habits were frequent in all ecosystems and the highest biomass of arthropod fauna comes from groups of polyphagous habits, of medium size and great abundance. Light and dark colorations are the most frequent in landscape-scale. Conclusion: The ecosystems studied are characterized by the low values of diversity and replacement and the large number of non-shared groups that apparently respond to the microclimatic characteristics; however, there are some generalities on a landsc ape scale such as the greater richness and abundance of groups in the intermediate strata, the greater proportion of groups with phytophagous habits and medium body sizes, and the predominance of dark colorations in the lower strata.


Resumen Introducción: A pesar del interés que despiertan los ecosistemas derivados de las formaciones guyanesas, se desconoce la estructura vertical de las comunidades y las relaciones de la biota con las condiciones climáticas. Objetivo: Caracterizar la estructura y composición vertical de la artropofauna asociada a tres de los ecosistemas más representativos de la zona norte de la serranía de La Lindosa en Colombia, con base en parámetros morfológicos y ecológicos. Métodos: Se muestreó la artropofauna, desde el nivel del suelo subsuperficial hasta los estratos arbustivos y arbóreos, y se identificó hasta el nivel de familia o grupo supraespecífico. Se determinaron los valores de diversidad Alfa y Beta, se realizaron mediciones de la longitud corporal y se determinó la coloración y el nivel trófico de cada grupo. Resultados: La composición y diversidad de la artropofauna fue diferente en cada ecosistema y estrato vertical y la mayoría de los grupos de artrópodos en todos los ecosistemas estudiados presentan abundancias bajas. Los grupos de hábitos fitófagos y depredadores fueron frecuentes en todos los ecosistemas y la mayor biomasa de artropofauna proviene de grupos de hábitos polífagos, de tamaño medio y de gran abundancia. Las coloraciones claras y oscuras son las más frecuentes a escala de paisaje. Conclusión: Los ecosistemas estudiados se caracterizan por los bajos valores de diversidad y recambio y por la gran cantidad de grupos no compartidos que aparentemente responden a las características microclimáticas; sin embargo, existen algunas generalidades a escala de paisaje como la mayor riqueza y abundancia de grupos en los estratos intermedios, la mayor proporción de grupos de hábitos fitófagos y tallas corporales medianas y el predominio de coloraciones oscuras en los estratos inferiores.


Assuntos
Animais , Artrópodes/anatomia & histologia , Ecossistema , Biodiversidade
15.
Acta Trop ; 221: 106009, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126089

RESUMO

São Paulo is one of the largest cities in the world and has several characteristics that favor a diversity of urban and wild mosquitoes. Little is known about how variations in mosquito diversity and feeding preferences for different hosts in different vegetation strata can influence the risk of pathogen transmission to humans. We investigated vertical stratification of mosquitoes and its relationship with vertebrate hosts in environments with different degrees of conservation in two conservation units in the city of São Paulo. Adult mosquitoes were collected using CDC traps, aspiration and Shannon traps. After morphological identification, host blood in engorged females was analyzed by PCR with a vertebrate-specific primer set based on mitochondrial cytochrome b DNA of vertebrates commonly found in the two conservation units. Although a higher abundance of the species Anopheles cruzii and Culex nigripalpus was found in the canopy, blood not only from birds but also from humans and rodents was identified in these mosquitoes. In one of the units, Wyeomyia confusa and Limatus durhamii were found occupying mainly niches at ground level while Culex vaxus was frequently found in the canopy. Haemagogus leucocelaenus, the main vector of yellow fever, was found in low abundance at all collection points, particularly in the canopy. Species richness and composition tended to vary little between canopy and ground level in the same environment, but the abundance between canopy and ground level varied more depending on the species analyzed, the most abundant and frequent species exhibiting a predilection for the canopy. Even those mosquito species observed more frequently in the canopy did not show an association with hosts found in this stratum as most of the blood identified in these species was from humans, suggesting opportunist feeding behavior, i.e., feeding on the most readily available host in the environment. The two most common species in the study, An. cruzii and Cx. nigripalpus, may be able to act as bridge vectors for pathogens to circulate between the forest canopy and ground level.


Assuntos
Anopheles , Culex , Culicidae , Ecossistema , Animais , Brasil , Cidades , Comportamento Alimentar , Feminino , Mosquitos Vetores
16.
Biodivers Data J ; 8: e56999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223914

RESUMO

We examined the vertical stratification of forest wildlife, from the ground up to the canopy layer, within a 2-hectare permanent plot of lowland evergreen rainforest on the Mt. Makiling Forest Reserve. Our aim was to determine the species richness of the different forest layers and evaluate their ecosystem services. Understorey, sub-canopy and canopy sampling were conducted during July 2016, March to April 2017 and February to March 2018, respectively. We were able to record a total of 68 species, consisting of 11 amphibians, 15 reptiles, 25 birds and 17 mammals. Increasing species richness with increasing vertical stratification was observed for both reptiles and mammals. For birds, the peak richness was observed in the sub-canopy and then decreased in the canopy. A decreasing trend was observed with amphibians wherein the peak species richness was observed in the understorey. Increasing vertical stratification influenced vertical habitat use and species richness. For the similarity index, the same pattern was observed for all species groups. Highest similarity was observed between the sub-canopy and the canopy and the least similarity was observed between the understorey and canopy. These results indicate that the understorey and the canopy host different species groups, thus, sampling of the understorey alone, often done in biodiversity surveys, may lead to the underestimation of species richness in an area.

17.
Soc Sci Res ; 86: 102375, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32056564

RESUMO

Previous studies have shown that intergenerational socioeconomic association becomes weaker as children's education level increases and is negligible among college graduates. A college degree is known as the great equalizer for intergenerational socioeconomic mobility. Recent studies, however, reported that the strong intergenerational association reemerges among advanced degree holders although it stays weak among BA-only holders. Despite the substantial theoretical importance and policy implications, the mechanisms behind the reemergence of the intergenerational association at the post-baccalaureate level have been less studied. In this paper, we examine the association between parents' education and children's earnings using the 2010, 2013, 2015, and 2017 National Survey of College Graduates data. Our results show that the strong intergenerational socioeconomic immobility among advanced degree holders is fully attributable to three educational sorting mechanisms: children from high-SES families (1) obtain expensive and financially rewarding advanced degrees, (2) attend selective institutions and major in hyper-lucrative fields of study such as law and medicine in graduate school, and (3) complete their education at a younger age and enjoy income growth over more years in the labor market. Implications of these findings are discussed.

18.
Insect Sci ; 27(4): 826-844, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31112329

RESUMO

We made intensive samplings to study the seasonal response of spiders across different forest strata (ground and understory) in a tropical mountain cloud forest from Mexico. We sampled spiders from ten plots in six sampling events during the dry and rainy season, to analyze their abundance, structure (distribution of abundance among species), diversity and the response of the five dominant species at each stratum. Results demonstrated that seasonal patterns of spider communities differed among strata, revealing a complex spatiotemporal dynamic. Abundance, structure, diversity of ground spiders, as well as the responses of four dominant species at this stratum, showed low seasonal variations. In contrast, a strong seasonal variation was observed for the understory assemblage, with lowest abundance and highest diversity in the rainy season, and different assemblage structures for each season. Seasonal patterns of each assemblage seem linked to the responses of their dominant species. We found high co-occurrence among most of the ground dominant species with similar habitat use and with multivoltine patterns, contrasting with low co-occurrence among most of the understory dominant species with similar habitat use and univoltine patterns. Our results showed that the spiders' assemblages of tropical mountain cloud forest (opposed to what is found in temperate and boreal forests) increase their species richness with the height, and that their responses to seasonal change differ between strata. Management programs of these habitats should consider the spatial and temporal variations found here, as a better understanding of their ecological dynamics is required to support their sustainable management.


Assuntos
Biodiversidade , Florestas , Aranhas , Árvores , Animais , Feminino , Masculino , México , Estações do Ano , Clima Tropical
19.
J Anim Ecol ; 89(2): 347-359, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31637702

RESUMO

Gradients in cuticle lightness of ectotherms have been demonstrated across latitudes and elevations. Three key hypotheses have been used to explain these macroecological patterns: the thermal melanism hypothesis (TMH), the melanism-desiccation hypothesis (MDH) and the photo-protection hypothesis (PPH). Yet the broad abiotic measures, such as temperature, humidity and UV-B radiation, typically used to detect these ecogeographical patterns, are a poor indication of the microenvironment experienced by small, cursorial ectotherms like ants. We tested whether these macroecological hypotheses explaining cuticle lightness held at habitat and microclimatic level by using a vertical gradient within a tropical rainforest. We sampled 222 ant species in lowland, tropical rainforest across four vertical strata: subterranean, ground, understory and canopy. We recorded cuticle lightness, abundance and estimated body size for each species and calculated an assemblage-weighted mean for cuticle lightness and body size for each vertical stratum. Abiotic variables (air temperature, vapour pressure deficit and UV-B radiation) were recorded for each vertical stratum. We found that cuticle lightness of ant assemblages was vertically stratified: ant assemblages in the canopy and understory were twice as dark as assemblages in ground and subterranean strata. Cuticle lightness was not correlated with body size, and there was no support for the TMH. Rather, we attribute this cline in cuticle lightness to a combination of the MDH and the PPH. Our findings indicate that broad macroecological patterns can be detected at much smaller spatial scales and that microclimatic gradients can shape trait variation, specifically the cuticle lightness of ants. These results suggest that any changes to microclimate that occur due to land-use change or climate warming could drive selection of ants based on cuticle colour, altering assemblage structure and potentially ecosystem functioning.


Assuntos
Formigas , Microclima , Animais , Cor , Ecossistema , Floresta Úmida
20.
ACS Appl Mater Interfaces ; 11(29): 26213-26221, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31257846

RESUMO

The conventional bulk heterojunction (BHJ) structure is widely used for fabricating high-performance organic solar cells (OSCs) due to the nanometer-scale phase separation of the donor/acceptor component. However, the elaborate control of the BHJ morphology is difficult to carry out because the morphology evolution is such a complicated process. The compatibility requirement of materials in the same solvent restricts the structural diversity of the molecules to some extent. Meanwhile, the nanoscopic interpenetrating donor/acceptor domains reduce their crystallinity. The bilayer planar heterojunction (PHJ), by contrast, possesses complementary advantages that can make it an alternative candidate to achieve device fabrication and produce different vertical stratification in heterojunction films. However, the flat contact area limits the charge separation and transmission efficiency. The sequential solution processed approach was used to facilitate material diffusion in layers. Also, solvent additives were employed to further enhance the diffusion and thus the device performance. Nevertheless, the morphology of the formed pseudo-bilayer planar heterojunction (PPHJ) has not been fully revealed yet. Here, we carefully study the morphology of the nonfullerene-based PPHJ device in three dimensions. High hole mobility of 2.09 × 10-4 cm2 V-1 s-1 and electron mobility of 7.91 × 10-5 cm2 V-1 s-1 were obtained in the solution-processed PPHJ device. Meanwhile, a distinct phase separation size with a vertical rearrangement of donor and acceptor was observed, which enable the pseudo-bilayer devices to be equipped with a comparable spectral response to the BHJ devices. We demonstrate that a unique device architecture (ITO/ZnO/PBDB-T/ITIC/MoO3/Ag) with a power conversion efficiency of 7% can be obtained from a larger molecular weight of PBDB-T without using extra additives. The solution-processed PPHJ films have much in common with the BHJ films. The results proposed that with appropriate molecular design and vertical phase separation optimization, the performance of the solution-processed PPHJ-based OSCs can be further improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...