Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
Sci Total Environ ; 946: 174368, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955273

RESUMO

The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.

2.
BMC Genomics ; 25(1): 604, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886668

RESUMO

BACKGROUND: Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS: The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION: This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.


Assuntos
Diarreia , Testes de Sensibilidade Microbiana , Filogenia , Salmonella enterica , Sorogrupo , Humanos , China , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/classificação , Masculino , Pré-Escolar , Diarreia/microbiologia , Infecções por Salmonella/microbiologia , Genoma Bacteriano , Genômica , Antibacterianos/farmacologia , Fatores de Virulência/genética
3.
Infect Drug Resist ; 17: 2555-2566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933775

RESUMO

Objective: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. Methods: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. Results: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. Conclusion: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment.

4.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930502

RESUMO

Multidrug-resistant (MDR) Escherichia coli poses a significant threat to public health, contributing to elevated rates of morbidity, mortality, and economic burden. This study focused on investigating the antibiotic resistance profiles, resistance and virulence gene distributions, biofilm formation capabilities, and sequence types of E. coli strains resistant to six or more antibiotic classes. Among 918 strains isolated from 33 wastewater treatment plants (WWTPs), 53.6% (492/918) demonstrated resistance, 32.5% (298/918) were MDR, and over 8% (74/918) were resistant to six or more antibiotic classes, exhibiting complete resistance to ampicillin and over 90% to sulfisoxazole, nalidixic acid, and tetracycline. Key resistance genes identified included sul2, blaTEM, tetA, strA, strB, and fimH as the predominant virulence genes linked to cell adhesion but limited biofilm formation; 69% showed no biofilm formation, and approximately 3% were strong producers. Antibiotic residue analysis detected ciprofloxacin, sulfamethoxazole, and trimethoprim in all 33 WWTPs. Multilocus sequence typing analysis identified 29 genotypes, predominantly ST131, ST1193, ST38, and ST69, as high-risk clones of extraintestinal pathogenic E. coli. This study provided a comprehensive analysis of antibiotic resistance in MDR E. coli isolated from WWTPs, emphasizing the need for ongoing surveillance and research to effectively manage antibiotic resistance.

5.
Front Microbiol ; 15: 1364373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694808

RESUMO

Escherichia coli (E. coli) is closely associated with the occurrence of puerperal metritis in dairy cows. E. coli carries some the virulence and multi-drug resistant genes, which pose a serious threat to the health of postpartum cows. In this study, E. coli was isolated and identified from the uterine contents of postpartum cows with puerperal metritis in the Ningxia region of China, and its phylogenetic subgroups were determined. Meanwhile, virulence and drug resistance genes carried by E. coli and drug sensitivity were detected, and the characteristics of virulence and drug resistance genes distribution in E. coli phylogroups were further analyzed. The results showed that the isolation rate of E. coli in puerperal metritis samples was 95.2%. E. coli was mainly divided into phylogroups B2 and D, followed by groups A and B1, and was more connected to O157:H7, O169:H4, and ECC-1470 type strains. The virulence genes were mainly dominated by ompF (100%), traT (100%), fimH (97%), papC (96%), csgA (95%), Ang43 (93.9%), and ompC (93%), and the resistance genes were dominated by TEM (99%), tetA (71.7%), aac(3)II (66.7%), and cmlA (53.5%). Additionally, it was observed that the virulence and resistance gene phenotypes could be divided into two subgroups, with subgroup B2 and D having the highest distributions. Drug sensitivity tests also revealed that the E. coli was most sensitive to the fluoroquinolones enrofloxacin, followed by macrolides, aminoglycosides, tetracyclines, ß-lactams, peptides and sulfonamides, and least sensitive to lincosamides. These results imply that pathogenic E. coli, which induces puerperal metritis of dairy cows in the Ningxia region of China, primarily belongs to the group B2 and D, contains multiple virulence and drug resistance genes, Moreover, E. coli has evolved resistance to several drugs including penicillin, lincomycin, cotrimoxazole, and streptomycin. It will offer specific guidelines reference for the prevention and treatment of puerperal metritis in dairy cows with E. coli infections in the Ningxia region of China.

6.
Pol J Microbiol ; 73(2): 189-197, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38808771

RESUMO

Acinetobacter baumannii is a non-fermentative Gram-negative bacterium that can cause nosocomial infections in critically ill patients. Carbapenem-resistant A. baumannii (CRAB) has spread rapidly in clinical settings and has become a key concern. The main objective of this study was to identify the distribution of integrons and biofilm-formation-related virulence genes in CRAB isolates. A total of 269 A. baumannii isolates (219 isolates of CRAB and 50 isolates of carbapenem-sensitive A. baumannii (CSAB)) were collected. Carbapenemase genes (bla KPC, bla VIM, bla IMP, bla NDM, and bla OXA-23-like) and biofilm-formation-related virulence genes (abal, bfms, bap, and cusE) were screened with PCR. Class 1 integron was screened with PCR, and common promoters and gene cassette arrays were determined with restriction pattern analysis combined with primer walking sequencing. Whole-genome sequencing was conducted, and data were analyzed for a bla OXA-23-like-negative isolate. All 219 CRAB isolates were negative for bla KPC, bla VIM, bla IMP, and bla NDM, while bla OXA-23-like was detected in 218 isolates. The detection rates for abal, bfms, bap, and cusE in 219 CRAB were 93.15%, 63.93%, 88.13%, and 77.63%, respectively. Class 1 integron was detected in 75 CRAB (34.25%) and in 3 CSAB. The single gene cassette array aacA4-catB8-aadA1 with relatively strong PcH2 promoter was detected in class 1 integrons. The bla OXA-23-like-negative CRAB isolate was revealed to be a new sequence type (Oxford 3272, Pasteur 2520) carrying bla OXA-72, bla OXA-259, and bla ADC-26. In conclusion, bla OXA-23-like was the main reason for CRAB's resistance to carbapenems. A new (Oxford 3272, Pasteur 2520) CRAB sequence type carrying the bla OXA-72, bla OXA-259, and bla ADC-26 was reported.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Proteínas de Bactérias , Biofilmes , Integrons , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/efeitos dos fármacos , beta-Lactamases/genética , Integrons/genética , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Infecções por Acinetobacter/microbiologia , Humanos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
7.
Animals (Basel) ; 14(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791650

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is recognized as a zoonotic pathogen with an increasing threat to livestock and poultry. However, research on K. pneumoniae of animal origin remains limited. To address the gap, a comprehensive investigation was carried out by collecting a total of 311 samples from the farms of four animal species (dairy cow, chicken, sheep, and pig) in selected areas of Xinjiang, China. Isolates were identified by khe gene amplification and 16S rRNA gene sequencing. Genotyping of K. pneumonia isolates was performed using wzi typing and multilocus sequence typing (MLST). PCR was employed to identify virulence and resistance genes. An antibiotic susceptibility test was conducted using the Kirby-Bauer method. The findings revealed an isolation of 62 K. pneumoniae strains, with an average isolation rate of 19.94%, with the highest proportion originating from cattle sources (33.33%). Over 85.00% of these isolates harbored six virulence genes (wabG, uge, fimH, markD, entB, and ureA); while more than 75.00% of isolates possessed four resistance genes (blaTEM, blaSHV, oqxA, and gyrA). All isolates exhibited complete resistance to ampicillin and demonstrated substantial resistance to sulfisoxazole, amoxicillin/clavulanic acid, and enrofloxacin, with an antibiotic resistance rate of more than 50%. Furthermore, 48.39% (30/62) of isolates were classified as multidrug-resistant (MDR) strains, with a significantly higher isolation rate observed in the swine farms (66.67%) compared to other farms. Genetic characterization revealed the classification of the 62 isolates into 30 distinct wzi allele types or 35 different sequence types (STs). Notably, we identified K. pneumoniae strains of dairy and swine origin belonging to the same ST42 and wzi33-KL64 types, as well as strains of dairy and chicken origin belonging to the same wzi31-KL31-K31 type. These findings emphasize the widespread occurrence of drug-resistant K. pneumoniae across diverse animal sources in Xinjiang, underscoring the high prevalence of multidrug resistance. Additionally, our results suggest the potential for animal-to-animal transmission of K. pneumoniae and there was a correlation between virulence genes and antibiotic resistance genes. Moreover, the current study provides valuable data on the prevalence, antibiotic resistance, and genetic diversity of K. pneumoniae originating from diverse animal sources in Xinjiang, China.

8.
Microorganisms ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792783

RESUMO

The present study involves the precise identification and safety evaluation of Enterococcus casseliflavus KB1733, previously identified using 16S rRNA analysis, through whole-genome sequencing, phenotypic analysis, and preclinical toxicity studies. Analyses based on the genome sequencing data confirm the identity of KB1733 as E. casseliflavus and show that the genes related to vancomycin resistance are only present on the chromosome, while no virulence factor genes are present on the chromosome or plasmid. Phenotypic analyses of antibiotic resistance and hemolytic activity also indicated no safety concerns. A bacterial reverse mutation test showed there was no increase in revertant colonies of heat-killed KB1733. An acute toxicity test employing heat-killed KB1733 at a dose of 2000 mg/kg body weight in rats resulted in no deaths and no weight gain or other abnormalities in the general condition of the animals, with renal depression foci and renal cysts only occurring at the same frequency as in the control. Taking the background data into consideration, the effects on the kidneys observed in the current study were not caused by KB1733. Our findings suggest that KB1733 is non-pathogenic to humans/animals, although further studies involving repeated oral toxicity tests and/or clinical tests are required.

9.
Meat Sci ; 214: 109534, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749270

RESUMO

This study investigated the synergistic effects of ε-poly- L -lysine (ε-PL) and lysozyme against P. aeruginosa and L. monocytogenes biofilms. Single-culture biofilms of two bacteria were formed on silicone rubber (SR), stainless steel (SS), and beef surfaces and then treated with lysozyme (0.05-5 mg/mL) and ε-PL at minimum inhibitory concentrations (MICs) of 1 to 4 separately or in combination. On the SR surface, P. aeruginosa biofilm was reduced by 1.4 and 1.9 log CFU/cm2 within 2 h when treated with lysozyme (5 mg/mL) and ε-PL (4 MIC), respectively, but this reduction increased significantly to 4.1 log CFU/cm2 (P < 0.05) with the combined treatment. On beef surface, P. aeruginosa and L. monocytogenes biofilm was reduced by 4.2-5.0, and 3.3-4.2 log CFU/g when lysozyme was combined with 1, 2, and 4 MIC of ε-PL at 25 °C, respectively. Compared to 5 mg/mL lysozyme alone, the combined treatment with 1, 2, and 4 MIC of ε-PL on beef surface achieved additional reduction against P. aeruginosa biofilm of 0.5, 0.8, and 0.7 log CFU/g, respectively, at 25 °C. In addition, 0.25 mg/mL lysozyme and 0.5 MIC of ε-PL significantly (P < 0.05) suppressed the quorum-sensing (agrA) and virulence-associated (hlyA and prfA) genes of L. monocytogenes.


Assuntos
Biofilmes , Listeria monocytogenes , Muramidase , Polilisina , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Muramidase/farmacologia , Biofilmes/efeitos dos fármacos , Animais , Listeria monocytogenes/efeitos dos fármacos , Polilisina/farmacologia , Bovinos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Carne Vermelha/microbiologia , Microbiologia de Alimentos , Aço Inoxidável , Antibacterianos/farmacologia
10.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612785

RESUMO

Trueperella pyogenes can cause various infections in the organs and tissues of different livestock (including pigs, cows, goats, and sheep), including mastitis, endometritis, pneumonia, or abscesses. Moreover, diseases induced by T. pyogenes cause significant economic losses in animal husbandry. In recent large-scale investigations, T. pyogenes has been identified as one of the main pathogens causing endometritis in lactating cows. However, the main treatment for the above-mentioned diseases is still currently antibiotic therapy. Understanding the impact of endometritis associated with T. pyogenes on the fertility of cows can help optimize antibiotic treatment for uterine diseases, thereby strategically concentrating the use of antimicrobials on the most severe cases. Therefore, it is particularly important to continuously monitor the prevalence of T. pyogenes and test its drug resistance. This study compared the uterine microbiota of healthy cows and endometritis cows in different cattle farms, investigated the prevalence of T. pyogenes, evaluated the genetic characteristics and population structure of isolated strains, and determined the virulence genes and drug resistance characteristics of T. pyogenes. An amount of 186 dairy cows were involved in this study and 23 T. pyogenes strains were isolated and identified from the uterine lavage fluid of dairy cows with or without endometritis.


Assuntos
Endometrite , Feminino , Humanos , Bovinos , Animais , Ovinos , Suínos , Endometrite/veterinária , Lactação , Virulência/genética , Genótipo , Útero , Cabras
11.
Heliyon ; 10(7): e28839, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601628

RESUMO

Illnesses associated with consuming infected milk and milk products are a widespread problem in low and middle-income countries. Shiga toxin-producing Escherichia coli (STEC) is a bacterium commonly found in raw milk and causes foodborne diseases ranging from mild diarrhea to severe hemorrhagic colitis and hemolytic uremic syndrome. This study aimed to investigate the virulence gene and antimicrobial resistance profiles of Shiga toxin-producing E. coli strains isolated from raw milk in dairy farms in and around Bahir Dar town. Raw milk samples (n = 128) collected from December 2021 to July 2022 were cultured, and E. coli strains were isolated using standard methods. Shiga toxin-producing E. coli strains were identified genotypically by the presence of the virulence markers using a single-plex polymerase chain reaction. The antibiotic susceptibility testing of Shiga toxin-producing E. coli isolates was done by the agar disk diffusion method. In total, 32 E. coli isolates were recovered from milk samples from lactating animals. PCR screening of these isolates resulted in 19 (59.3%) positives for Shiga toxin-producing E. coli. The stx2 gene was detected in 53% of cases, followed by stx1 (31%) and eae (16%. The STEC isolates were highly sensitive to ciprofloxacin (94.7%) and kanamycin (89.5%), while exhibiting significant resistance to amoxicillin (89.5%) and streptomycin (73.7%). The present study points out the occurrence of virulent and antibiotic-resistant Shiga toxin-producing E. coli strains in raw milk that could pose a potential risk to public health. Further analysis by whole genome sequencing is necessary for an in-depth assessment and understanding of their virulence and resistance factors. Moreover, large-scale studies are needed to identify the prevalence and potential risk factors and to prevent the spread of antibiotic-resistant STEC strains in the milk production chain.

12.
Antibiotics (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667046

RESUMO

This systematic review and meta-analysis investigates the prevalence of Vibrio parahaemolyticus, its virulence factors, antimicrobial resistance (AMR), and its resistance determinants in shrimp. This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, to identify and select relevant peer-reviewed articles published between January 2020 and December 2022. The search strategy involved multiple online databases, including Google Scholar, PubMed, ScienceDirect, and Scopus. The inclusion criteria focused on studies that examined V. parahaemolyticus prevalence, virulence factors, and AMR in shrimp from farms to retail outlets. A total of 32 studies were analyzed, revealing a pooled estimate prevalence of V. parahaemolyticus in shrimp at 46.0%, with significant heterogeneity observed. Subgroup analysis highlighted varying prevalence rates across continents, emphasizing the need for further investigation. Virulence factor analysis identified thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) as the most common. Phenotypic AMR analysis indicated notable resistance to glycopeptides, nitrofurans, and beta-lactams. However, the correlation between antimicrobial usage in shrimp farming and observed resistance patterns was inconclusive. Funnel plots suggested potential publication bias, indicating a need for cautious interpretation of findings. This study underscores the urgency of coordinated efforts to address AMR in V. parahaemolyticus to safeguard public health and to ensure sustainable aquaculture practices.

13.
Wei Sheng Yan Jiu ; 53(1): 55-59, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38443172

RESUMO

OBJECTIVE: To investigate the virulence genes and antimicrobial resistance of Bacillus cereus from the pre-packaged pastries in Taizhou city. METHODS: 500 pre-packaged patries were collected in taizhou city market. 97 Bacillus cereus strains were detected from them by GB 4789.14-2014 method and identified with 4 houseking genes, then 13 virulence genes were detected by polymerase chain reaction(PCR)method and the antimicrobial resistance of Bacillus cereus to 19 antibiotics was detected by paper diffusion method. RESULTS: The result showed that the contamination rate of Bacillus cereus was 19.4% in 500 pre-packaged pastries. The detection rate of four housekeeping genes groEL, gyr B, rpoB and Vrr were 100%, 94.8%, 97.9% and 96.9%, respectively, and 89.7% at the same time. The virulence gene test result showed that the detection rate of nheABC, entFM, bceT, cytK and hblABCD were 91.8%, 88.7%, 61.9%, 51.6% and 25.8%, emetic virulence genes had the lowest detection rate, ces and EMl were 4.1%, cer was 5.2%. 97 Bacillus cereus strains show different degrees of drug resistance to 14 antimicrobials, the resistance rates to penicillin, ampicillin, cefotaxime and cotrimoxazole were higher than 95%, but they were completely sensitive to streptomycin, vancomycin and chloramphenicol. CONCLUSION: There is a risk of contamination by diarrhea-type Bacillus cereus and vomiting-type Bacillus cereus in prepackaged pastries in Taizhou. The isolated and identified Bacillus cereus has multiple-drug resistance.


Assuntos
Antibacterianos , Bacillus cereus , Antibacterianos/farmacologia , Bacillus cereus/genética , Farmacorresistência Bacteriana/genética , Virulência/genética , Ampicilina
14.
Front Biosci (Landmark Ed) ; 29(3): 112, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538253

RESUMO

BACKGROUND: With the recent evolution of multidrug-resistant strains, the genetic characteristics of foodborne Salmonella enterica serovar Enteritidis and clinical isolates have changed. ST11 is now the most common genotype associated with S. Enteritidis isolates. METHODS: A total of 83 strains of S. Enteritidis were collected at the General Hospital of the People's Liberation Army. Of these, 37 were from aseptic sites in patients, 11 were from the feces of patients with diarrhea, and the remaining 35 were of chicken-origin. The minimum inhibitory concentration of S. Enteritidis was determined by the broth microdilution method. Genomic DNA was extracted using the QiAamp DNA Mini Kit, and whole-genome sequencing (WGS) was performed using an Illumina X-ten platform. Prokka was used for gene prediction and annotation, and bioinformatic analysis tools included Resfinder, ISFinder, Virulence Factor Database, and PlasmidFinder. IQ-TREE was used to build a maximum likelihood phylogenetic tree. The phylogenetic relationship and distribution of resistance genes was displayed using iTOL. Comparative population genomics was used to analyze the phenotypes and genetic characteristics of antibiotic resistance in clinical and chicken-origin isolates of S. Enteritidis. RESULTS: The chicken-origin S. Enteritidis isolates were more resistant to antibiotics than clinical isolates, and had a broader antibiotic resistance spectrum and higher antibiotic resistance rate. A higher prevalence of antibiotic-resistance genes was observed in chicken-origin S. Enteritidis compared to clinical isolates, along with distinct patterns in the contextual characteristics of these genes. Notably, genes such as blaCTX-M and dfrA17 were exclusive to plasmids in clinical S. Enteritidis, whereas in chicken-origin S. Enteritidis they were found in both plasmids and chromosomes. Additionally, floR was significantly more prevalent in chicken-origin isolates than in clinical isolates. Careful analysis revealed that the delayed isolation of chicken-origin S. Enteritidis contributes to accelerated gene evolution. Of note, certain resistance genes tend to integrate seamlessly and persist steadfastly within the chromosome, thereby expediting the evolution of resistance mechanisms against antibiotics. Our comparative analysis of virulence genes in S. Enteritidis strains from various sources found no substantial disparities in the distribution of other virulence factors. In summary, we propose that chicken-origin S. Enteritidis has the potential to cause clinical infections. Moreover, the ongoing evolution and dissemination of these drug-resistant genes poses a formidable challenge to clinical treatment. CONCLUSIONS: Constant vigilance is needed to monitor the dynamic patterns of drug resistance in S. Enteritidis strains sourced from diverse origins.


Assuntos
Salmonella enterica , Salmonella enteritidis , Animais , Humanos , Salmonella enteritidis/genética , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Galinhas/genética , Testes de Sensibilidade Microbiana , Genômica , DNA , Salmonella enterica/genética , Farmacorresistência Bacteriana Múltipla/genética
15.
Antibiotics (Basel) ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534680

RESUMO

Members of the Bacillus cereus group are spore-forming Gram-positive bacilli that are commonly associated with diarrheal or emetic food poisoning. They are widespread in nature and frequently present in both raw and processed food products. Here, we genetically characterized 24 B. cereus group isolates from foodstuffs. Whole-genome sequencing (WGS) revealed that most of the isolates were closely related to B. cereus sensu stricto (12 isolates), followed by B. pacificus (5 isolates), B. paranthracis (5 isolates), B. tropicus (1 isolate), and "B. bingmayongensis" (1 isolate). The most detected virulence genes were BAS_RS06430, followed by bacillibactin biosynthesis genes (dhbA, dhbB, dhbC, dhbE, and dhbF), genes encoding the three-component non-hemolytic enterotoxin (nheA, nheB, and nheC), a gene encoding an iron-regulated leucine-rich surface protein (ilsA), and a gene encoding a metalloprotease (inhA). Various biofilm-associated genes were found, with high prevalences of tasA and sipW genes (matrix protein-encoding genes); purA, purC, and purL genes (eDNA synthesis genes); lytR and ugd genes (matrix polysaccharide synthesis genes); and abrB, codY, nprR, plcR, sinR, and spo0A genes (biofilm transcription regulator genes). Genes related to fosfomycin and beta-lactam resistance were identified in most of the isolates. We therefore demonstrated that WGS analysis represents a useful tool for rapidly identifying and characterizing B. cereus group strains. Determining the genetic epidemiology, the presence of virulence and antimicrobial resistance genes, and the pathogenic potential of each strain is crucial for improving the risk assessment of foodborne B. cereus group strains.

16.
J Infect Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526342

RESUMO

In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E. coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E. coli (EAEC)-specific virulence factors. Here, we identified an E. coli O104:H4 isolate that carried a single nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E. coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E. coli O104:H4 virulence, primarily through an AggR-dependent mechanism.

17.
Vet Med Sci ; 10(3): e1424, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38519838

RESUMO

BACKGROUND: Companion animals, including dogs and cats, are frequently identified as sources of Pasteurella multocida, a bacterium that can be transmitted to humans and cause infections. OBJECTIVES: This survey defines the prevalence, antibiotic sensitivity, capsular types, lipopolysaccharide (LPS) types and virulence factors of P. multocida isolated from cats. METHODS: A total of 100 specimens from various cat breeds were collected. P. multocida was characterized using both biochemical tests and PCR. Genotypes of isolates were determined using capsular and LPS typing methods. Additionally, virulotyping was performed by detecting the presence of 12 virulence-associated genes. Disk diffusion was used to determine the antibiotic sensitivity of the isolates. RESULTS: The prevalence of P. multocida in cats was 29%. Among the isolates, the majority were capsular type A (96.5%) and type D (3.4%), with a predominant presence of type A. Twenty-six of the isolates (89.66%) belonged to LPS genotype L6, whereas three isolates (10.3%) belonged to genotype L3. Among the 12 virulence genes examined, sodC, oma87, ptfA, nanB and ompH showed remarkable prevalence (100%). The toxA gene was detected in four isolates (13.8%). Variations were observed in other virulence genes. The nanH gene was present in 93.1% of the isolates, whereas the pfhA gene was detected in 58.6% of the isolates. The exbD-tonB, hgbB, sodA and hgbA genes showed prevalence rates of 96.5%, 96.5%, 96.5% and 82.8%, respectively. Additionally, particular capsule and LPS types were associated with specific virulence genes. Specifically, the toxA and pfhA genes were found to be more prevalent in isolates with capsular type A and LPS genotype L6. Most isolates were resistant to ampicillin, clindamycin, lincomycin, streptomycin and penicillin. CONCLUSIONS: According to this epidemiological and molecular data, P. multocida from cats possess several virulence-associated genes and are resistant to antimicrobial medicines commonly used in humans and animals. Thus, it is crucial to consider the public health concerns of P. multocida in humans.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Pasteurella , Pasteurella multocida , Gatos , Animais , Humanos , Cães , Pasteurella multocida/genética , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Antibacterianos/farmacologia , Lipopolissacarídeos , Doenças do Gato/epidemiologia
18.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474323

RESUMO

This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 µg/mL) and bactericidal concentration (2.0 µg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.


Assuntos
Cinnamomum , Óleos Voláteis , Óleos Voláteis/farmacologia , Cinnamomum/genética , Staphylococcus aureus/fisiologia , Virulência , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Estresse Oxidativo , Transcrição Gênica , Peptídeo Hidrolases/genética , Testes de Sensibilidade Microbiana
19.
J Bacteriol ; 206(4): e0003124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534115

RESUMO

A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE: Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.


Assuntos
Infecções por Proteus , Infecções Urinárias , Animais , Camundongos , Proteus mirabilis/genética , Urease/metabolismo , Níquel/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Ureia/metabolismo
20.
Virus Res ; 343: 199342, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...