Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.296
Filtrar
1.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965586

RESUMO

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Assuntos
Antibacterianos , Cefepima , Galinhas , Colistina , Farmacorresistência Bacteriana Múltipla , Levofloxacino , Testes de Sensibilidade Microbiana , Salmonella enterica , Sorogrupo , Animais , Egito , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Colistina/farmacologia , Levofloxacino/farmacologia , Cefepima/farmacologia , beta-Lactamases/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Salmonelose Animal/microbiologia , Humanos
2.
Sci Rep ; 14(1): 15494, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969720

RESUMO

Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli , Genoma Bacteriano , Fatores de Virulência , Sequenciamento Completo do Genoma , Animais , Bovinos , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Camundongos , Diarreia/microbiologia , Diarreia/veterinária , Virulência/genética , Doenças dos Bovinos/microbiologia , China , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
3.
Jpn J Infect Dis ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945860

RESUMO

The combination of the four regions of vacA with cagA, cagE, dupA genes and cagA-EPIYA motifs, was studied to find the most likely combination that can be used as a disease determinant marker in Moroccan population. A total of 838 H. pylori positive obtained from consenting patients, that were previously analyzed by PCR to characterize vacA-s -m, -i regions, cagE status and cagA 3' region polymorphism, were used to characterize vacA-d region and to determine dupA gene status. The analysis shows the predominance of the less virulent combination (vacA(s2m2i2d2)dupA(-)cagE(-)cagA(-)), and shows that the risk of gastric cancer is 13.33 fold higher (1.06-166.37)) in patients infected by strains harboring vacA(s1m1i1d1)dupA(-)cagE(+)cagA(2EPIYA-C) compared to patients with gastritis without lesions and infected by H.pylori strains harboring vacA(s2m2i2d2)dupA(-)cagE(-)cagA(-). The infection with strains harboring vacA(s1m1i1d1)dupA(+)cagE(+)cagA(1EPIYAC) genotype combination represents a risk factor for gastric ulcer and duodenal ulcer (the Odds Ratio (95% CI) were 16 (1.09-234.24) and 6.54 (1.60-26.69) respectively) compared to patients with gastritis without lesions. These results suggest that the combination of the active form of vacA genotypes, dupA gene status and the number of EPIYA-C motif may be considered helpful markers to discriminate between several gastric diseases.

4.
Sci Rep ; 14(1): 14569, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914650

RESUMO

Mastitis is considered one of the most widespread infectious disease of cattle and buffaloes, affecting dairy herds. The current study aimed to characterize the Staphylococcus aureus isolates recovered from subclinical mastitis animals in Pothohar region of the country. A total of 278 milk samples from 17 different dairy farms around two districts of the Pothohar region, Islamabad and Rawalpindi, were collected and screened for sub clinical mastitis using California Mastitis Test. Positive milk samples were processed for isolation of Staphylococcus aureus using mannitol salt agar. The recovered isolates were analyzed for their antimicrobial susceptibility and virulence genes using disc diffusion and PCR respectively. 62.2% samples were positive for subclinical mastitis and in total 70 Staphylococcus aureus isolates were recovered. 21% of these isolates were determined to be methicillin resistant, carrying the mecA gene. S. aureus isolates recovered during the study were resistant to all first line therapeutic antibiotics and in total 52% isolates were multidrug resistant. SCCmec typing revealed MRSA SCCmec types IV and V, indicating potential community-acquired MRSA (CA-MRSA) transmission. Virulence profiling revealed high prevalence of key genes associated with adhesion, toxin production, and immune evasion, such as hla, hlb, clfA, clfB and cap5. Furthermore, the Panton-Valentine leukocidin (PVL) toxin, that is often associated with recurrent skin and soft tissue infections, was present in 5.7% of isolates. In conclusion, the increased prevalence of MRSA in bovine mastitis is highlighted by this study, which also reveals a variety of virulence factors in S. aureus and emphasizes the significance of appropriate antibiotic therapy in combating this economically burdensome disease.


Assuntos
Antibacterianos , Mastite Bovina , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bovinos , Mastite Bovina/microbiologia , Feminino , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Paquistão , Virulência/genética , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Leite/microbiologia , Proteínas de Bactérias/genética
5.
Vet Med Sci ; 10(4): e1490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837675

RESUMO

BACKGROUND: Ornithobacterium rhinotracheal (ORT) infects numerous birds, particularly chickens and turkeys. ORT is an emerging bacterial pathogen of global concern in the poultry industry. As ORT is rapidly spreading throughout commercial poultry, it requires intensive studies of its epidemiology, diagnostic procedures, molecular typing, virulence genes and antimicrobial resistance. OBJECTIVES: The present study was conducted in isolation and identification of ORT from slaughtered turkeys. METHODS: Cleft palate swabs of 200 were collected from slaughtered turkeys and cultured on blood agar. ORT was characterized using biochemical tests and PCR targeting the ORT 16S rRNA gene. Virulence genes of isolates were determined targeting adenylate kinase (adk), copA and virulence-associated protein D (vapD) genes. Additionally, diversity of ORT isolates was performed by enterobacterial repetitive intergenic consensus (ERIC) and RAPD PCR. Disk diffusion was used to determine the antibiotic sensitivity of the isolates. RESULTS: ORT was identified in 23 (11.5%) samples using both the biochemical tests and PCR. The result of detecting virulence genes showed that all the isolates (23: 100%) had the adk gene, whereas two (8.7%) isolates had the copA gene, and seven (30.43%) isolates had the vapD gene. Molecular typing of isolates revealed 21 different patterns by RAPD PCR assay using M13 primer and 20 distinct patterns by ERIC PCR test. Both ERIC and RAPD PCR were distinctive methods for investigating the genetic diversity of ORT isolates. The antibiotic resistance test showed that 18 (78.26%) isolates were resistant to gentamicin, amikacin, cefazolin, streptomycin and penicillin. All isolates (100%) were resistant to cloxacillin and fosfomycin. CONCLUSIONS: This study showed the prevalence of ORT in turkey and high resistance of this bacterium to many common veterinary antibiotics. Moreover, both ERIC and RAPD PCR are distinctive methods for investigating the genetic diversity of ORT isolates. These data may help monitor antibiotic resistance and typing of ORT in epidemiological studies and serve as the foundation for designing region-specific vaccines for future use.


Assuntos
Infecções por Flavobacteriaceae , Ornithobacterium , Doenças das Aves Domésticas , Perus , Animais , Perus/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Ornithobacterium/genética , Ornithobacterium/efeitos dos fármacos , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/epidemiologia , Farmacorresistência Bacteriana , Antibacterianos/farmacologia
6.
Front Cell Infect Microbiol ; 14: 1358270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895734

RESUMO

Introduction: Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods: A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results: Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion: This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Ciclídeos , Ligilactobacillus salivarius , Testes de Sensibilidade Microbiana , Nanocompostos , Probióticos , Zinco , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Nanocompostos/química , Antifúngicos/farmacologia , Zinco/farmacologia , Probióticos/farmacologia , Humanos , Ligilactobacillus salivarius/efeitos dos fármacos , Ligilactobacillus salivarius/fisiologia , Egito , Nanopartículas/química , Microbiologia da Água
7.
Animals (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891615

RESUMO

Pasteurellosis, a disease caused by Pasteurella multocida, is responsible for economic losses in rabbit industrial farms due to rhinitis, conjunctivitis, pneumonia, metritis, mastitis, orchitis, subcutaneous abscesses, otitis, encephalitis, and septicaemic forms. Although the occurrence of the disease is conditioned by predisposing factors that affect the rabbit immune response, the strains of P. multocida involved in the infection may have a different pathogenic ability. Therefore, typing of strains spread among the rabbits is important to assess their pathogenic potential. The aim of this study is to investigate the P. multocida strains responsible for disease in rabbit industrial farms. A total of 114 strains identified from different lesions were serotyped. Additionally, the presence of virulence-associated genes was investigated using three PCR (polymerase chain reaction) protocols. Capsular type A was prevalently found in strains from respiratory lesions while types D and F in those from metritis, mastitis, and other lesions. Different associations between some virulence-associated genes and both capsular type and lesions found in rabbits were detected. The presence of 8 virulence-associated genes seems to increase the occurrence of metritis. In addition, strains belonging to capsular type A and responsible for respiratory disorders especially, were found equipped with 10 and 11 virulence-associated genes. Nevertheless, the presence of strains responsible only for rhinitis was also detected among the latter, suggesting that the pathogenic ability of the bacteria depends on the expression rather than the presence of a gene.

8.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891852

RESUMO

Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health.


Assuntos
Patos , Animais , Patos/microbiologia , Humanos , Salmonella/genética , Salmonella/patogenicidade , Salmonella/isolamento & purificação , Salmonella/efeitos dos fármacos , Sequenciamento Completo do Genoma , Ilhas Genômicas/genética , Salmonelose Animal/microbiologia , Antibacterianos/farmacologia , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Salmonella enterica/isolamento & purificação , Salmonella enterica/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Filogenia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética
9.
Int J Vet Sci Med ; 12(1): 39-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854457

RESUMO

In Italy, the use of autogenous inactivated vaccines prepared with the bacterial strains isolated from affected animals is authorized by the Ministry of Health in farms where bacterial diseases occur frequently. The autogenous vaccine performed using Pasteurella multocida is frequently used in rabbit farms, but the feedback of its application is not available. Therefore, the aim of this study is to give information about the impact on the clinical signs of a bivalent autogenous vaccine in rabbits of a genetic centre. The vaccine was prepared using two P. multocida strains belonging to serogroups A and F, equipped with virulence genes and responsible for cyclical outbreak of pasteurellosis in the farm. The vaccine was administered with a first injection, followed by another one after 15 days, then another one four months after the first injection, and then continuing with a further injection every six months to all rabbits. Clinical conditions and mortality rates were monitored for two years after the first vaccination. The improvement in clinical condition and the decrease of the mortality rate were significant especially in the first year post-vaccine. In addition, the number of animals removed due to the disease decreased greatly. Based on the finding of P. multocida strains belonging to serogroup D and serogroup A equipped with different virulence-gene patterns from those previously found, we suggest that the vaccine was unable to prevent the introduction and spreading of new strains among the rabbits.

10.
Res Sq ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826277

RESUMO

Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade, originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at genome level among strains, as well as to determine their phylogeny. For this purpose, whole genomes were sequenced by different technologies and the resulting sequences corrected. Genomes were annotated and compared with different online tools. Furthermore, the study of core and pan genome was examined, and the phylogeny was inferred. The content of the core genome ranged from 2,953 to 2,766 genes and that of the pangenome from 6,278 to 6,132, depending on the tool used. The comparison revealed that although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI higher than 97%,notable differences were found related to motility, capsule synthesis, iron acquisition system or mobile genetic elements. The phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle, but that of the pangenome pointed out certain geographical isolation in the same growing area. The study led to a reclassification of some isolates formerly described as V. toranzoniae and manifested the importance of cured deposited sequences to proper phylogenetic assignment.

11.
Ann Clin Microbiol Antimicrob ; 23(1): 56, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902832

RESUMO

OBJECTIVES: The aim of this study was to evaluate the characteristics of immunocyte associated with bloodstream infection (BSI) caused by Klebsiella pneumoniae (Kpn). METHODS: Patients with BSI-Kpn were included from 2015 to 2022 in our hospital. Immunocyte subpopulations of enrolled BSI-Kpn patients were tested on the same day of blood culture using multicolor flow cytometry analysis. Antibiotic susceptibility test was determined by agar dilution or broth dilution method. All included isolates were subjected to whole genome sequencing and comparative genomics analysis. Clinical and genetic data were integrated to investigate the risk factors associated with clinical outcome. RESULTS: There were 173 patients with non-duplicate BSI-Kpn, including 81 carbapenem-resistant Kpn (CRKP), 30 extended-spectrum ß-lactamases producing Kpn (ESBL-Kpn), 62 none CRKP or ESBL-Kpn (S-Kpn). Among 68 ST11-CRKP isolates, ST11-O2v1:KL64 was the most common serotypes cluster (77.9%, 53/68), followed by ST11-OL101: KL47 (13.2%, 9/68). Compared with CSKP group, subpopulations of immunocyte in patients with CRKP were significantly lower (P < 0.01). In patients with ST11-O2v1:KL64 BSI-Kpn, the level of cytotoxic T lymphocytes (CD3 + CD8 +) is the highest, while the B lymphocytes (CD3-CD19 +) was the least. In addition, the level of immunocyte in patients with Kpn co-harbored clpV-ybtQ-qacE were lower than that in patients with Kpn harbored one of clpV, ybtQ or qacE and without these three genes. Furthermore, co-existence of clpV-ybtQ-qacE was independently associated with a higher risk for 30-day mortality. CONCLUSIONS: The results demonstrate that patients with BSI-CRKP, especially for ST11-O2v1:KL64, exhibit lower leukomonocyte counts. In addition, BSI-Kpn co-harbored clpV-ybtQ-qacE is correlated to higher 30-day mortality.


Assuntos
Antibacterianos , Bacteriemia , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/microbiologia , Masculino , Feminino , Bacteriemia/microbiologia , Pessoa de Meia-Idade , Idoso , beta-Lactamases/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Sorogrupo , Genômica , Adulto , Idoso de 80 Anos ou mais , Carbapenêmicos/farmacologia
12.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829455

RESUMO

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Assuntos
Genoma Bacteriano , Filogenia , Fatores de Virulência , Yersinia , Yersinia/genética , Yersinia/classificação , Yersinia/patogenicidade , Yersinia/isolamento & purificação , Fatores de Virulência/genética , Brasil , Yersiniose/microbiologia , Yersiniose/veterinária , Humanos , Genômica , Prófagos/genética , Plasmídeos/genética , Tipagem de Sequências Multilocus , Virulência/genética
13.
Front Microbiol ; 15: 1298582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933030

RESUMO

Introduction: Antimicrobial resistance is increasingly becoming a global health concern. This study aimed to investigate and report MDR Escherichia coli (E. coli) prevalence, resistance, and virulence genes from poultry in Jos, Plateau State, Nigeria. Methods: The samples were analyzed using microbiological standard methods and polymerase chain reactions (PCRs). Results: A total of 179 cloacal swabs were collected from bothlocal and exotic poultry breeds, of which 99.4% (178/179) tested positive for E. coli. Among these culturally identified samples, 99.4% (177/178) were furtherconfirmed Escherichia coli with a molecular weight of 401 bp. Multidrugresistance of 45% (80/178) was observed from the confirmed isolates. PCR assays were conducted to detect genes associated with resistance to antibiotics, specifically, tetracycline (tetA gene), sulfonamide (sul1 gene), ampicillin (ampC gene), and quinolone (gyrA gene). Antimicrobial susceptibility test (AST) results revealed substantial antibiotic resistance, with 81.9% (145/177) of the isolates being resistant to tetracycline, 80.2% (142/177) to quinolone, 69.5% (123/177) to sulfonamide, and 66.1% (117/177) to ampicillin. Further analysis on 18 isolates that showed resistance to up to four different antibiotics was carried out using multiplex PCR to detect eae, hlyA, rfbE, fliC, and fstx virulence genes. The study found that 44.4% (15/18) of the isolates were positive for the eae gene, 27.7% (5/18) for stx, 22.2% (4/18) for rfbe gene, and 5.5% (1) for hlya gene, and none tested positive for fliC gene. Conclusion: These results showed high antibiotic resistance, virulent genes, and significant levels of MDR in E. coli from poultry. This study highlights the urgent need for antimicrobial stewardship practices within the poultry industry due to their profound implications for food safety and public health. This issue is particularly critical in Nigeria, where poultry farming constitutes a significant portion of smallholder farming practices.

14.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929403

RESUMO

The QXL87 live attenuated vaccine strain for infectious bronchitis represents the first approved QX type (GI-19 lineage) vaccine in China. This strain was derived from the parental strain CK/CH/JS/2010/12 through continuous passage in SPF chicken embryos. To elucidate the molecular mechanism behind its attenuation, whole-genome sequencing was conducted on both the parental and attenuated strains. Analysis revealed 145 nucleotide mutations in the attenuated strain, leading to 48 amino acid mutations in various proteins, including Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a (1), E (1), and N (1). Additionally, a frameshift mutation caused by a single base insertion in the ORFX resulted in a six-amino-acid extension. Subsequent comparison of post-translational modification sites, protein structure, and protein-protein binding sites between the parental and attenuated strains identified three potential virulence genes: Nsp2, Nsp3, and S. The amino acid mutations in these proteins not only altered their conformation but also affected the distribution of post-translational modification sites and protein-protein interaction sites. Furthermore, three potential functional mutation sites-P106S, A352T, and L472F, all located in the Nsp2 protein-were identified through PROVEAN, PolyPhen, and I-Mutant. Overall, our findings suggest that Nsp2, Nsp3, and S proteins may play a role in modulating IBV pathogenicity, with a particular focus on the significance of the Nsp2 protein. This study contributes to our understanding of the molecular mechanisms underlying IBV attenuation and holds promise for the development of safer live attenuated IBV vaccines using reverse genetic approaches.

15.
Microorganisms ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38930458

RESUMO

(1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum ß-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried blaCTX-M-27 and blaTEM-176. (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.

16.
Microbiol Spectr ; 12(6): e0006424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712940

RESUMO

Pseudomonas syringae pv. syringae (Pss) is an emerging phytopathogen that causes Pseudomonas leaf spot (PLS) disease in pepper plants. Pss can cause serious economic damage to pepper production, yet very little is known about the virulence factors carried by Pss that cause disease in pepper seedlings. In this study, Pss strains isolated from pepper plants showing PLS symptoms in Ohio between 2013 and 2021 (n = 16) showed varying degrees of virulence (Pss populations and disease symptoms on leaves) on 6-week-old pepper seedlings. In vitro studies assessing growth in nutrient-limited conditions, biofilm production, and motility also showed varying degrees of virulence, but in vitro and in planta variation in virulence between Pss strains did not correlate. Comparative whole-genome sequencing studies identified notable virulence genes including 30 biofilm genes, 87 motility genes, and 106 secretion system genes. Additionally, a total of 27 antimicrobial resistance genes were found. A multivariate correlation analysis and Scoary analysis based on variation in gene content (n = 812 variable genes) and single nucleotide polymorphisms within virulence genes identified no significant correlations with disease severity, likely due to our limited sample size. In summary, our study explored the virulence and antimicrobial gene content of Pss in pepper seedlings as a first step toward understanding the virulence and pathogenicity of Pss in pepper seedlings. Further studies with additional pepper Pss strains will facilitate defining genes in Pss that correlate with its virulence in pepper seedlings, which can facilitate the development of effective measures to control Pss in pepper and other related P. syringae pathovars. IMPORTANCE: Pseudomonas leaf spot (PLS) caused by Pseudomonas syringae pv. syringae (Pss) causes significant losses to the pepper industry. Highly virulent Pss strains under optimal environmental conditions (cool-moderate temperatures, high moisture) can cause severe necrotic lesions on pepper leaves that consequently can decrease pepper yield if the disease persists. Hence, it is important to understand the virulence mechanisms of Pss to be able to effectively control PLS in peppers. In our study, in vitro, in planta, and whole-genome sequence analyses were conducted to better understand the virulence and pathogenicity characteristics of Pss strains in peppers. Our findings fill a knowledge gap regarding potential virulence and pathogenicity characteristics of Pss in peppers, including virulence and antimicrobial gene content. Our study helps pave a path to further identify the role of specific virulence genes in causing disease in peppers, which can have implications in developing strategies to effectively control PLS in peppers.


Assuntos
Capsicum , Doenças das Plantas , Folhas de Planta , Pseudomonas syringae , Fatores de Virulência , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Capsicum/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Fatores de Virulência/genética , Folhas de Planta/microbiologia , Sequenciamento Completo do Genoma , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano/genética , Genômica
17.
Microb Pathog ; 192: 106704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761893

RESUMO

The indiscriminate use of antimicrobials has led to the emergence of resistant bacteria, especially pathogenic strains of Escherichia coli, which are associated with diseases in animals and humans. The aim of the present study was to characterize E. coli isolates in calves with regards to the presence of virulence genes and investigate the resistance of the isolates to different antimicrobials. Between 2021 and 2023, 456 fecal samples were collected from calves in the Pantanal and Cerrado biomes of the state of Mato Grosso do Sul, Brazil. All samples were subjected to microbiological analysis and disc diffusion antibiogram testing. The polymerase chain reaction method was used to detect virulence genes. Bacterial growth was found in 451 of the 456 samples and biochemically identified as Escherichia coli. All 451 isolates (100 %) exhibited some phenotypic resistance to antimicrobials and 67.62 % exhibited multidrug resistance. The frequency of multidrug-resistant isolates in the Cerrado biome was significantly higher than that in the Pantanal biome (p = 0.0001). In the Cerrado, the most common pathotype was Shiga toxin-producing Escherichia coli (STEC) (28 %), followed by toxigenic Escherichia coli (ETEC) (11 %), enterohemorrhagic Escherichia coli (EHEC) (8 %) and enteropathogenic Escherichia coli (EPEC) (2 %). In most cases, the concomitant occurrence of pathotypes was more common, the most frequent of which were ETEC + STEC (33 %), ETEC + EHEC (15 %) and ETEC + EPEC (3 %). The STEC pathotype (30 %) was also found more frequently in the Pantanal, followed by EHEC (12 %), ETEC (9 %) and EPEC (6 %). The STEC pathotype had a significantly higher frequency of multidrug resistance (p = 0.0486) compared to the other pathotypes identified. The frequency of resistance was lower in strains from the Pantanal biome compared to those from the Cerrado biome. Although some factors are discussed in this paper, it is necessary to clarify the reasons for this difference and the possible impacts of these findings on both animal and human health in the region.


Assuntos
Antibacterianos , Doenças dos Bovinos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Fatores de Virulência , Animais , Bovinos , Brasil , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fezes/microbiologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Fatores de Virulência/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Proteínas de Escherichia coli/genética
18.
Indian J Med Microbiol ; 49: 100617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763381

RESUMO

PURPOSE: This study investigated to detect serotypes and virulence genes of Group B Streptococcus (GBS) isolated from pregnant women. METHODS: Forty-five samples of GBS isolates from January to August 2019 at antenatal clinics of 4 teaching hospitals in Western Province, Sri Lanka were included. Isolated GBS were carried to identify 9 serotypes by multiplex PCR. Different virulence determinants, including bac, rib and scp(B) have been detected by PCR. RESULTS: Among GBS-positive culture isolates most abundant serotype detected was type III 12/45 (26.7%) while serotype VII, VIII and IX were not seen. Furthermore, serotype Ia (15.6%); II (20%); V (17.8%); VI (15.6%); Ib (2.2%) and IV (2.2%) were identified. Among 5 rectal isolates, 1 isolate was serotype Ia, 2 isolates were serotype II and 2 isolates were serotype III. Forty (40/45) isolates expressed scpB gene (88.8%). Presence of rib gene was confirmed in 17.8%, bac in 13.3% isolates. ScpB, rib and bac were identified in 4.4% isolates, 8.9% isolates were scpB, rib positive and bac negative, 8.9% isolates were scpB, bac positive and rib negative. These three-virulence genes did not express in 8.9% isolates. ScpB gene was found once in serotype Ib and IV and all serotype VI expressed scpB gene. Rib gene was more common among serotype II and it was not found in serotype Ib, IV and VI. Bac gene was more common in serotype V and it was not found in serotype Ia, Ib and IV. There was not significant association between serotypes and virulence gene (p > 0.05). CONCLUSION: Serotype III is the most abundant serotype. In formulation of vaccine against GBS for Sri Lanka, serotype III should be targeted. Prevalence of vaccine candidate virulence protein such as ß antigens of the C protein (bac) and surface protein Rib (rib) genes were low in this study.


Assuntos
Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Centros de Atenção Terciária , Fatores de Virulência , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/classificação , Streptococcus agalactiae/isolamento & purificação , Humanos , Feminino , Sri Lanka/epidemiologia , Fatores de Virulência/genética , Gravidez , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Adulto , Complicações Infecciosas na Gravidez/microbiologia
19.
Int J Med Microbiol ; 315: 151622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776570

RESUMO

BACKGROUND: The increasing prevalence of antibiotic-resistant Helicobacter pylori strains poses a significant threat to children's health. This study investigated antibiotic resistance rates in Helicobacter pylori strains isolated from children in Shanghai and analyzed the presence of virulence genes in these strains. METHODS: We obtained 201 Helicobacter pylori strains from pediatric patients with upper gastrointestinal symptoms who underwent gastrointestinal endoscopy between 2019 and 2022. Subsequently, we performed antibiotic susceptibility tests and virulence gene PCR assays on these strains. RESULTS: Helicobacter pylori resistance rates of 45.8%, 15.4%, 1.0%, and 2.5% were detected for metronidazole, clarithromycin, amoxicillin, and levofloxacin, respectively. Among all isolates, 64.7% exhibited resistance to at least one antibiotic. Resistance to metronidazole and clarithromycin increased from 2019 to 2022. The predominant vacA gene subtype was vacA s1a/m2. The prevalence of vacA m2 and dupA exhibited an upward trend, while oipA presented a decreasing trend from 2019 to 2022. The prevalence of dupA was significantly higher in gastritis than peptic ulcer disease, and in non-treatment compared to treatment groups. CONCLUSIONS: Helicobacter pylori antibiotic resistance remains high in children and has risen in recent years. Therefore, the increasing use of metronidazole and clarithromycin requires increased monitoring in children. No association was observed between antibiotic resistance and virulence gene phenotypes.


Assuntos
Antibacterianos , Proteínas de Bactérias , Claritromicina , Farmacorresistência Bacteriana , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Fatores de Virulência , Humanos , Helicobacter pylori/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Helicobacter pylori/isolamento & purificação , China/epidemiologia , Criança , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/epidemiologia , Antibacterianos/farmacologia , Feminino , Masculino , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Farmacorresistência Bacteriana/genética , Adolescente , Pré-Escolar , Claritromicina/farmacologia , Metronidazol/farmacologia , Virulência/genética , Gastrite/microbiologia , Gastrite/epidemiologia , Prevalência , Úlcera Péptica/microbiologia , Lactente , Amoxicilina/farmacologia , Proteínas da Membrana Bacteriana Externa
20.
Braz J Microbiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755407

RESUMO

The Rio Grande/Rio Bravo River is used as a major water supply for diverse recreational, household, and industrial activities in Northeast Tamaulipas, Mexico, and South Texas. In this study, we sampled surface water from 38 sites along Rio Grande/Rio Bravo River (Díaz Ordaz, Reynosa and Matamoros). We isolated 105 E. coli strains that were molecularly and phenotypically characterized. The percentage of virulence genes detected in E. coli were: hlyA (15.23%), stx2 (11.42%), stx1 (9.52%), bfp (0.95%), and eae (0.0) and combinations of stx1/stx2 (2.85%), stx2/hlyA (1.90%), stx1/bfp (0.95%) and stx2/bfp (0.95%) were detected in these strains. Resistance to more than one antibiotic was detected in 85.71%, and 5.71% of strains were extended-spectrum ß-lactamase-E. coli (ESBL-EC). These results indicate the presence of potentially pathogenic E. coli strains in the Rio Grande/Rio Bravo River; therefore, it can be considered a reservoir of pathogenic strains and represents a health risk for the population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...