RESUMO
Introduction. Staphylococcus aureus is a leading agent in community-acquired bacteraemia (CAB) and has been linked to elevated mortality rates and methicillin resistance in Costa Rica.Gap statement and aim. To update and enhance previous data obtained in this country, we analysed the clinical manifestations of 54 S. aureus CAB cases in a tertiary hospital and delineated the sequence types (STs), virulome, and resistome of the implicated isolates.Methodology. Clinical information was retrieved from patient files. Antibiotic susceptibility profiles were obtained with disc diffusion and automated phenotypic tests. Genomic data were exploited to type the isolates and for detection of resistance and virulence genes.Results. Primary infections predominantly manifested as bone and joint infections, followed by skin and soft tissue infections. Alarmingly, 70% of patients continued to exhibit positive haemocultures beyond 48 h of treatment modification, with nearly a quarter requiring mechanical ventilation or developing septic shock. The 30-day mortality rate reached an alarming 40%. More than 60% of the patients were found to have received suboptimal or inappropriate antibiotic treatment, and there was an alarming tendency towards the overuse of third-generation cephalosporins as empirical treatment. Laboratory tests indicated elevated creatinine levels, leukocytosis, and bandaemia within the first 24 h of hospitalization. However, most showed improvement after 48 h. The isolates were categorized into 13 STs, with a predominance of representatives from the clonal complexes CC72 (ST72), CC8 (ST8), CC5 (ST5, ST6), and CC1 (ST188). Twenty-four isolates tested positive for mecA, with ST72 strains accounting for 20. In addition, we detected genes conferring acquired resistance to aminoglycosides, MLSB antibiotics, trimethoprim/sulfamethoxazole, and mutations for fluoroquinolone resistance in the isolate collection. Genes associated with biofilm formation, capsule synthesis, and exotoxin production were prevalent, in contrast to the infrequent detection of enterotoxins or exfoliative toxin genes.Conclusions. Our findings broaden our understanding of S. aureus infections in a largely understudied region and can enhance patient management and treatment strategies.
Assuntos
Antibacterianos , Bacteriemia , Infecções Comunitárias Adquiridas , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus aureus , Centros de Atenção Terciária , Humanos , Costa Rica/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/mortalidade , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/mortalidade , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Bacteriemia/mortalidade , Bacteriemia/tratamento farmacológico , Masculino , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente , Fatores de Virulência/genética , CriançaRESUMO
Urban streams that receive untreated domestic and hospital waste can transmit infectious diseases and spread drug residues, including antimicrobials, which can then increase the selection of antimicrobial-resistant bacteria. Here, water samples were collected from three different urban streams in the state of São Paulo, Brazil, to relate their range of Water Quality Indices (WQIs) to the diversity and composition of aquatic microbial taxa, virulence genes (virulome), and antimicrobial resistance determinants (resistome), all assessed using untargeted metagenome sequencing. There was a predominance of phyla Proteobacteria, Actinobacteria, and Bacteroidetes in all samples, and Pseudomonas was the most abundant detected genus. Virulence genes associated with motility, adherence, and secretion systems were highly abundant and mainly associated with Pseudomonas aeruginosa. Furthermore, some opportunistic pathogenic genera had negative correlations with WQI. Many clinically relevant antimicrobial resistance genes (ARGs) and efflux pump-encoding genes that confer resistance to critically important antimicrobials were detected. The highest relative abundances of ARGs were ß-lactams and macrolide-lincosamide-streptogramin. No statistically supported relationship was detected between the abundance of virulome/resistome and collection type/WQI. On the other hand, total solids were a weak predictor of gene abundance patterns. These results provide insights into various microbial outcomes given urban stream quality and point to its ecological complexity. In addition, this study suggests potential consequences for human health as mediated by aquatic microbial communities responding to typical urban outputs.
Assuntos
Rios , Qualidade da Água , Humanos , Brasil , Antibacterianos/farmacologia , Antibacterianos/análise , Bactérias/genética , Genes BacterianosRESUMO
The emergence of hyper-virulent and multidrug-resistant (MDR) strains of Klebsiella pneumoniae isolated from patients with hospital- and community-acquired infections is a serious health problem that increases mortality. The molecular analysis of virulome expression related to antimicrobial-resistant genotype and infection type in K. pneumoniae strains isolated from patients with hospital- and community-acquired infections has been poorly studied. In this study, we analyzed the overall expression of the virulence genotype associated with the antimicrobial resistance genotype and pulse field gel electrophoresis (PFGE) type (PFtype) in K. pneumoniae. We studied 25 strains of K. pneumoniae isolated from patients who developed bacteremia and pneumonia during their hospital stay and 125 strains from outpatients who acquired community-acquired infections. Susceptibility to 12 antimicrobials was determined by Kirby-Bauer. The identification of K. pneumoniae and antibiotic-resistance genes was performed using polymerase chain reaction (PCR). To promote the expression of the virulence genes of K. pneumoniae, an in vitro infection model was used in human epithelial cell lines A549 and A431. Bacterial RNA was extracted with the QIAcube robotic workstation, and reverse transcription to cDNA was performed with the Reverse Transcription QuantiTect kit (Qiagen). The determination of the expression of the virulence genes was performed by real-time PCR. In addition, 57.3% (n = 86) of the strains isolated from patients with hospital- and community-acquired infections were multidrug-resistant (MDR), mainly to beta-lactam antibiotics (CB, AM, CFX, and CF), aminoglycosides (GE), quinolones (CPF and NOF), nitrofurantoin (NF), and sulfamethoxazole/trimethoprim (SXT). The most frequently expressed genes among strains isolated from hospital- and community-acquired infections were adhesion-type, ycfm (80%), mrkD (51.3%), and fimH (30.7%); iron uptake, irp2 (84%), fyuA (68.7%), entB (64.7%), and irp1 (56.7%); and protectins, rpmA (26%), which were related to antibiotic-resistance genes, blaTEM (96%), blaSHV (64%), blaCITM (52.6%), blaCTXM-1 (44.7%), tetA (74%), sul1 (57.3%), aac(3)-IV (40.7%), and aadA1 (36%). The results showed the existence of different patterns of expression of virulome related to the genotype of resistance to antimicrobials and to the PFtypes in the strains of K. pneumoniae that cause hospital- and community-acquired infections. These findings are important and may contribute to improving medical treatment strategies against infections caused by K. pneumoniae.
Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/genética , Genótipo , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/genética , Infecção Hospitalar/microbiologia , Hospitais , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
Canastra Minas Artisanal Cheese is produced in the Brazilian State of Minas Gerais using raw milk, rennet, and pingo, a natural endogenous starter culture (fermented whey) collected from the previous day's production. Due to the use of raw milk, the product can carry microorganisms that may cause foodborne diseases (FBD), including Staphylococcus aureus. Genomic characterization of S. aureus is an important tool to assess diversity, virulence, antimicrobial resistance, and the potential for causing food poisoning due to enterotoxin production. This study is aimed at exploring the genomic features of S. aureus strains isolated from Canastra Minas Artisanal Cheeses. Multilocus sequence typing (MLST) classified these strains as ST1, ST5, and a new profile ST7849 (assigned to the clonal complex CC97). These strains belonged to four spa types: t008, t127, t359, and t992. We identified antimicrobial resistance genes with phenotypic correlation against methicillin (MRSA) and tetracycline. Virulome analysis revealed genes associated with iron uptake, immune evasion, and potential capacity for adherence and biofilm formation. The toxigenic potential included cyto- and exotoxins genes, and all strains presented the genes that encode for Panton-Valentine toxin and hemolysin, and two strains encoded 4 and 8 Staphylococcal enterotoxin (SE) genes. The results revealed the pathogenic potential of the evaluated S. aureus strains circulating in the Canastra region, representing a potential risk to public health. This study also provides useful information to monitor and guide the application of control measures to the artisanal dairy food production chain.
Assuntos
Queijo , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Tipagem de Sequências Multilocus , Genômica , Enterotoxinas/genéticaRESUMO
The spread of carbapenemase-producing Klebsiella pneumoniae beyond hospital settings is a global critical issue within a public health and One Health perspective. Another worrisome concern is the convergence of virulence and resistance in healthcare-associated lineages of K. pneumoniae leading to unfavorable clinical outcomes. During a surveillance study of WHO critical priority pathogens circulating in an impacted urban river in São Paulo, Brazil, we isolate two hypermucoviscous and multidrug-resistant K. pneumoniae strains (PINH-4250 and PINH-4900) from two different locations near to medical centers. Genomic investigation revealed that both strains belonged to the global high-risk sequence type (ST) ST11, carrying the blaKPC-2 carbapenemase gene, besides other medically important antimicrobial resistance determinants. A broad virulome was predicted and associated with hypervirulent behavior in the Galleria mellonella infection model. Comparative phylogenomic analysis of PINH-4250 and PINH-4900 along to an international collection of publicly available genomes of K. pneumoniae ST11 revealed that both environmental strains were closely related to hospital-associated K. pneumoniae strains recovered from clinical samples between 2006 and 2018, in São Paulo city. Our findings support that healthcare-associated KPC-2-positive K. pneumoniae of ST11 clone has successfully expanded beyond hospital settings. In summary, aquatic environments can become potential sources of international clones of K. pneumoniae displaying carbapenem resistance and hypervirulent behaviors, which is a critical issue within a One Health perspective.
RESUMO
Background: The Andean condor (Vultur gryphus) is the largest scavenger in South America. This predatory bird plays a crucial role in their ecological niche by removing carcasses. We report the first metagenomic analysis of the Andean condor gut microbiome. Methods: This work analyzed shotgun metagenomics data from a mixture of fifteen captive Chilean Andean condors. To filter eukaryote contamination, we employed BWA-MEM v0.7. Taxonomy assignment was performed using Kraken2 and MetaPhlAn v2.0 and all filtered reads were assembled using IDBA-UD v1.1.3. The two most abundant species were used to perform a genome reference-guided assembly using MetaCompass. Finally, we performed a gene prediction using Prodigal and each gene predicted was functionally annotated. InterproScan v5.31-70.0 was additionally used to detect homology based on protein domains and KEGG mapper software for reconstructing metabolic pathways. Results: Our results demonstrate concordance with the other gut microbiome data from New World vultures. In the Andean condor, Firmicutes was the most abundant phylum present, with Clostridium perfringens, a potentially pathogenic bacterium for other animals, as dominating species in the gut microbiome. We assembled all reads corresponding to the top two species found in the condor gut microbiome, finding between 94% to 98% of completeness for Clostridium perfringens and Plesiomonas shigelloides, respectively. Our work highlights the ability of the Andean condor to act as an environmental reservoir and potential vector for critical priority pathogens which contain relevant genetic elements. Among these genetic elements, we found 71 antimicrobial resistance genes and 1,786 virulence factors that we associated with several adaptation processes.
Assuntos
Falconiformes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Metagenômica , Aclimatação , Chile , Clostridium perfringensRESUMO
Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.
RESUMO
The dissemination of carbapenem-resistant and third generation cephalosporin-resistant pathogens is a critical issue that is no longer restricted to hospital settings. The rapid spread of critical priority pathogens in Brazil is notably worrying, considering its continental dimension, the diversity of international trade, livestock production, and human travel. We conducted a nationwide genomic investigation under a One Health perspective that included Escherichia coli strains isolated from humans and nonhuman sources, over 45 years (1974-2019). One hundred sixty-seven genomes were analyzed extracting clinically relevant information (i.e., resistome, virulome, mobilome, sequence types [STs], and phylogenomic). The endemic status of extended-spectrum ß-lactamase (ESBL)-positive strains carrying a wide diversity of blaCTX-M variants, and the growing number of colistin-resistant isolates carrying mcr-type genes was associated with the successful expansion of international ST10, ST38, ST115, ST131, ST354, ST410, ST648, ST517, and ST711 clones; phylogenetically related and shared between human and nonhuman hosts, and polluted aquatic environments. Otherwise, carbapenem-resistant ST48, ST90, ST155, ST167, ST224, ST349, ST457, ST648, ST707, ST744, ST774, and ST2509 clones from human host harbored blaKPC-2 and blaNDM-1 genes. A broad resistome to other clinically relevant antibiotics, hazardous heavy metals, disinfectants, and pesticides was further predicted. Wide virulome associated with invasion/adherence, exotoxin and siderophore production was related to phylogroup B2. The convergence of wide resistome and virulome has contributed to the persistence and rapid spread of international high-risk clones of critical priority E. coli at the human-animal-environmental interface, which must be considered a One Health challenge for a post-pandemic scenario. IMPORTANCE A One Health approach for antimicrobial resistance must integrate whole-genome sequencing surveillance data of critical priority pathogens from human, animal and environmental sources to track hot spots and routes of transmission and developing effective prevention and control strategies. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we present genomic data of WHO critical priority carbapenemase-resistant, ESBL-producing, and/or colistin-resistant Escherichia coli strains isolated from humans and nonhuman sources in Brazil, a country with continental proportions and high levels of antimicrobial resistance. The present study provided evidence of epidemiological and clinical interest, highlighting that the convergence of wide virulome and resistome has contributed to the persistence and rapid spread of international high-risk clones of E. coli at the human-animal-environmental interface, which must be considered a One Health threat that requires coordinated actions to reduce its incidence in humans and nonhuman hosts.
Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Antibacterianos/farmacologia , Brasil/epidemiologia , Carbapenêmicos/farmacologia , Colistina , Comércio , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Genômica , Internacionalidade , Testes de Sensibilidade Microbiana , Pandemias , Organização Mundial da Saúde , beta-Lactamases/genéticaRESUMO
Klebsiella pneumoniae is an opportunistic pathogen that can cause several infections, mainly in hospitalised or immunocompromised individuals. The spread of K. pneumoniae emerging virulent and multidrug-resistant clones is a worldwide concern and its identification is crucial to control these strains especially in hospitals. This article reports data related to multi-resistant K. pneumoniae strains, isolated from inpatients in the city of Manaus, Brazil, harbouring virulence and antimicrobial-resistance genes, including high-risk international clones belonging to clonal group (CG) 258. Twenty-one strains isolated from different patients admitted to four hospitals in the city of Manaus, located in the state of Amazonas, Northern Brazil (Amazon Rainforest region) were evaluated. The majority of strains (61.9% n = 13) were classified as multidrug-resistant (MDR), and five strains (23.8%) as extensively drug-resistant (XDR). Several virulence and antimicrobial-resistance genes were found among the strains and eight strains (38.1%) presented the hyper-mucoviscous phenotype. MLST analysis demonstrated a great diversity of STs among the strains, totaling 12 different STs (ST11, ST23, ST198, ST277, ST307, ST340, ST378, ST462, ST502, ST3991, ST3993 and ST5209). Three of these (ST11, ST23 and ST340) belong to CG258.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estudos Retrospectivos , beta-Lactamases/genéticaRESUMO
Convergence of resistance and virulence in Klebsiella pneumoniae is a critical public health issue worldwide. A multidrug-resistant CTX-M-15-producing K. pneumoniae (TIES-4900 strain) was isolated from a highly impacted urban river, in Brazil. The genome was sequenced by MiSeq Illumina platform and de novo assembled using Unicycler. In silico prediction was accomplished by bioinformatics tools. The size of the genome is 5.4 Mb with 5145 protein-coding genes. TIES-4900 strain belonged to the sequence type ST15, yersiniabactin sequence type YbST10, ICEKp4, KL24 (wzi-24) and O1v1 locus. Phylogenomics confirmed genomic relatedness with ST15 clones from human and animal hosts. Convergence of broad resistome (antibiotics, heavy-metals and biocides) and virulome, including the Kpi pilus system involved in host-pathogen interaction and persistence of ST15 clone to hospital environments, were predicted. Virulent behavior was confirmed in the Galleria mellonella infection model. This study may give genomic insights on the spread of critical-priority WHO pathogens beyond hospital settings.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Brasil , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Rios , beta-Lactamases/genéticaRESUMO
Aquatic ecosystems are highly vulnerable to anthropogenic activities. However, it remains unclear how the microbiome responds to press disturbance events in these ecosystems. We examined the impact of the world's largest mining disaster (Brazil, 2015) on sediment microbiomes in two disturbed rivers compared to an undisturbed river during 390 days post-disturbance. The diversity and structure of the virulome and microbiome, and of antibiotic and metal resistomes, consistently differed between the disturbed and undisturbed rivers, particularly at day 7 post-disturbance. 684 different ARGs were predicted, 38% were exclusive to the disturbed rivers. Critical antibiotic resistance genes (ARGs), e.g., mcr and ereA2, were significantly more common in the disturbed microbiomes. 401 different ARGs were associated with mobile genetic elements (MGEs), 95% occurred in the disturbed rivers. While plasmids were the most common MGEs with a broad spectrum of ARGs, spanning 16 antibiotic classes, integrative conjugative elements (ICEs) and integrons disseminated ARGs associated with aminoglycoside and tetracycline, and aminoglycoside and beta-lactam, respectively. A significant increase in the relative abundance of class 1 integrons, ICEs, and pathogens was identified at day 7 in the disturbed microbiomes, 72-, 14- and 3- fold higher, respectively, compared with the undisturbed river. Mobile ARGs associated with ESKAPEE group pathogens, while metal resistance genes and virulence factor genes in nonpathogenic hosts predominated in all microbiomes. Network analysis showed highly interconnected ARGs in the disturbed communities, including genes targeting antibiotics of last resort. Interactions between copper and beta-lactam/aminoglycoside/macrolide resistance genes, mostly mobile and critical, were also uncovered. We conclude that the mud tsunami resulted in resistome expansion, enrichment of pathogens, and increases in promiscuous and mobile ARGs. From a One Health perspective, mining companies need to move toward more environmentally friendly and socially responsible mining practices to reduce risks associated with pathogens and critical and mobile ARGs.
Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Macrolídeos , TsunamisRESUMO
The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-ß-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.
RESUMO
Acinetobacter calcoaceticus-Acinetobacter baumannii complex is considered one of the main causes of hospital-acquired infections. Acinetobacter seifertii was recently characterized within this complex and it has been described as an emergent pathogen associated with bacteremia. The emergence of multidrug-resistant (MDR) bacteria, including Acinetobacter sp., is considered a global public health threat and an environmental problem because MDR bacteria have been spreading from several sources. Therefore, this study aimed to characterize an environmental MDR A. seifertii isolate (SAb133) using whole genome sequencing and a comparative genomic analysis was performed with A. seifertii strains recovered from various sources. The SAb133 isolate was obtained from soil of a corn crop field and presented high MICs for antimicrobials and metals. The comparative genomic analyses revealed ANI values higher than 95% of relatedness with other A. seifertii strains than A. calcoaceticus-A. baumannii complex. Resistome and virulome analyses were also performed and showed different antimicrobial resistance determinants and metal tolerance genes as well as virulence genes related to A. baumannii known virulence genes. In addition, genomic islands, IS elements, plasmids and prophage-related sequences were detected. Comparative genomic analysis showed that MDR A. seifertii SAb133 had a high amount of determinants related to antimicrobial resistance and tolerance to metals, besides the presence of virulence genes. To the best of our knowledge, this is the first report of a whole genome sequence of a MDR A. seifertii isolated from soil. Therefore, this study contributed to a better understanding of the genetic relationship among the few known A. seifertii strains worldwide distributed.
RESUMO
PURPOSE: Comparative genomic analysis of strains may help us to better understand the wide diversity of their genetic profiles. The aim of this study was to analyse the genomic features of the resistome and virulome of Brazilian first methicillin-resistant Staphylococcus aureus (MRSA) isolates and their relationship to other Brazilian and international MRSA strains. METHODOLOGY: The whole genomes of three MRSA strains previously isolated in Vitória da Conquista were sequenced, assembled, annotated and compared with other MRSA genomes. A phylogenetic tree was constructed and the pan-genome and accessory and core genomes were constructed. The resistomes and virulomes of all strains were identified.Results/Key findings. Phylogenetic analysis of all 49 strains indicated different clones showing high similarity. The pan-genome of the analysed strains consisted of 4484 genes, with 31 % comprising the gene portion of the core genome, 47 % comprising the accessory genome and 22 % being singletons. Most strains showed at least one gene related to virulence factors associated with immune system evasion, followed by enterotoxins. The strains showed multiresistance, with the most recurrent genes conferring resistance to beta-lactams, fluoroquinolones, aminoglycosides and macrolides. CONCLUSIONS: Our comparative genomic analysis showed that there is no pattern of virulence gene distribution among the clones analysed in the different regions. The Brazilian strains showed similarity with clones from several continents.