Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Front Insect Sci ; 4: 1385895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835480

RESUMO

Voltage-gated ion channels (VGICs) respond to changes in membrane potential (Vm) and typically exhibit fast kinetic properties. They play an important role in signal detection and propagation in excitable tissues. In contrast, the role of VGICs in non-excitable tissues like epithelia is less studied and less clear. Studies in epithelia of vertebrates and invertebrates demonstrate wide expression of VGICs in epithelia of animals. Recently, VGICs have emerged as regulators of ion transport in the Malpighian tubules (MTs) and other osmoregulatory organs of insects. This mini-review aims to concisely summarize which VGICs have been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects to date, and highlight select groups for further study. We have also speculated on the roles VGICs may potentially play in regulating processes connected directly to ion transport in insects (e.g., acid-base balance, desiccation, thermal tolerance). This review is not meant to be exhaustive but should rather serve as a thought-provoking collection of select existing highlights on VGICs, and to emphasize how understudied this mechanism of ion transport regulation is in insect epithelia.

2.
Methods Mol Biol ; 2796: 97-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856897

RESUMO

The development of cell-based fluorescent assays has resulted in an incredible tool for searching new ion channels' modulators with a biophysical and clinical profile. Among all the ion channels, potassium (K+)-permeable channels represent the most diverse and relevant for cell function, making them attractive targets for drug discovery. Some of the cell-based assays for K+ channels take advantage of a thallium-sensitive dye whose fluorescence increased upon the binding of thallium (Tl+), an ion able to move through K+ channels. We optimize the FLIPR Potassium Assay Kit based on thallium influx to measure the Kv10.1 activity.


Assuntos
Tálio , Tálio/metabolismo , Humanos , Corantes Fluorescentes/química , Células HEK293 , Fluorescência , Canais de Potássio Éter-A-Go-Go
3.
Cancers (Basel) ; 16(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38730738

RESUMO

Modern chemotherapies offer a broad approach to cancer treatment but eliminate both cancer and non-cancer cells indiscriminately and, thus, are associated with a host of side effects. Advances in precision oncology have brought about new targeted therapeutics, albeit mostly limited to a subset of patients with an actionable mutation. They too come with side effects and, ultimately, 'self-resistance' to the treatment. There is recent interest in the modulation of ion channels, transmembrane proteins that regulate the flow of electrically charged molecules in and out of cells, as an approach to aid treatment of cancer. Phytochemicals have been shown to act on ion channels with high specificity regardless of the tumor's genetic profile. This paper explores the use of phytochemicals in cancer symptom management and treatment.

4.
Neurobiol Dis ; 194: 106470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485094

RESUMO

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described altered sensitivity and cooperativity of the voltage sensor and impaired capacity for repetitive firing of neurons. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Consistent with the in vitro studies, neurons from Kcnb1R306C mice showed altered excitability. Heterozygous and homozygous R306C mice exhibited hyperactivity, altered susceptibility to chemoconvulsant-induced seizures, and frequent, long runs of slow spike wave discharges on EEG, reminiscent of the slow spike and wave activity characteristic of Lennox Gastaut syndrome. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Animais , Camundongos , Transtorno do Espectro Autista/patologia , Encefalopatias/patologia , Epilepsia/patologia , Mutação , Fenótipo , Convulsões
5.
J Comp Neurol ; 532(2): e25575, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335058

RESUMO

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here, we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1 and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar, while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization are similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1 in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.


Assuntos
Axônios , Gânglios Espinais , Camundongos , Humanos , Animais , Potenciais de Ação , Células Receptoras Sensoriais/fisiologia
6.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197515

RESUMO

Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.


Assuntos
Aedes , Febre Amarela , Animais , Aedes/fisiologia , Água/metabolismo , Túbulos de Malpighi/metabolismo , Febre Amarela/metabolismo , Mosquitos Vetores , Cloreto de Sódio/metabolismo , Transporte de Íons , Canais Iônicos/genética , Larva/fisiologia
7.
Expert Opin Drug Discov ; 19(2): 173-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37850233

RESUMO

INTRODUCTION: Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED: Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION: Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.


Assuntos
Doenças do Sistema Nervoso Central , Receptores Nicotínicos , Animais , Humanos , Xenopus laevis , Oócitos , Fármacos do Sistema Nervoso Central , Descoberta de Drogas , Receptores Nicotínicos/metabolismo
8.
Exp Physiol ; 109(1): 55-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966478

RESUMO

Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.


Assuntos
Mecanotransdução Celular , Fusos Musculares , Animais , Fusos Musculares/fisiologia , Neurônios , Canais Iônicos , Fenômenos Eletrofisiológicos , Mamíferos
9.
Adv Sci (Weinh) ; : e2304301, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039435

RESUMO

Drug studies targeting neuronal ion channels are crucial to understand neuronal function and develop therapies for neurological diseases. The traditional method to study neuronal ion-channel activities heavily relies on the whole-cell patch clamp as the industry standard. However, this technique is both technically challenging and labour-intensive, while involving the complexity of keeping cells alive with low throughput. Therefore, the shortcomings are limiting the efficiency of ion-channel-related neuroscience research and drug testing. Here, this work reports a new system of integrating neuron membranes with organic microelectrode arrays (OMEAs) for ion-channel-related drug studies. This work demonstrates that the supported lipid bilayers (SLBs) derived from both neuron-like (neuroblastoma) cells and primary neurons are integrated with OMEAs for the first time. The increased expression of voltage-gated calcium (CaV) ion channels on differentiated SH-SY5Y SLBs  compared to non-differentiated ones is sensed electrically. Also, dose-response of the CaV ion-channel blocking effect on primary cortical neuronal SLBs from rats is monitored. The dose range causing ion channel blocking is comparable to literature. This system overcomes the major challenges from traditional methods (e.g., patch clamp) and showcases an easy-to-test, rapid, ultra-sensitive, cell-free, and high-throughput platform to monitor dose-dependent ion-channel blocking effects on native neuronal membranes.

10.
Front Comput Neurosci ; 17: 1265958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156040

RESUMO

Objective: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach: We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results: Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance: Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.

11.
Cell Rep Methods ; 3(9): 100559, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751687

RESUMO

Heterologous expression of recombinant ion channel subunits in cell lines is often limited by the presence of a low number of channels at the cell surface level. Here, we introduce a combination of two techniques: viral expression using the baculovirus system plus cell-cycle arrest at the G1/S boundary using either thymidine or hydroxyurea. This method achieved a manifold increase in the peak current density of expressed ion channels compared with the classical liposome-mediated transfection methods. The enhanced ionic current was accompanied by an increase in the density of gating charges, confirming that the increased yield of protein and ionic current reflects the functional localization of channels in the plasma membrane. This modified method of viral expression coordinated with the cell cycle arrest will pave the way to better decipher the structure and function of ion channels and their association with ion channelopathies.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Humanos , Canais Iônicos/genética , Membrana Celular/metabolismo , Transfecção , Pontos de Checagem do Ciclo Celular/genética
12.
Heliyon ; 9(7): e17989, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501995

RESUMO

Osteoarthritis (OA) is one of the leading causes of chronic pain and dysfunction. It is essential to comprehend the nature of pain and cartilage degeneration and its influencing factors on OA treatment. Voltage-gated ion channels (VGICs) are essential in chondrocytes and extracellular matrix (ECM) metabolism and regulate the pain neurotransmitters between the cartilage and the central nervous system. This narrative review focused primarily on the effects of VGICs regulating pain neurotransmitters and chondrocytes metabolism, and most studies have focused on voltage-sensitive calcium channels (VSCCs), voltage-gated sodium channels (VGSCs), acid-sensing ion channels (ASICs), voltage-gated potassium channels (VGKCs), voltage-gated chloride channels (VGCCs). Various ion channels coordinate to maintain the intracellular environment's homeostasis and jointly regulate metabolic and pain under normal circumstances. In the OA model, the ion channel transport of chondrocytes is abnormal, and calcium influx is increased, which leads to increased neuronal excitability. The changes in ion channels are strongly associated with the OA disease process and individual OA risk factors. Future studies should explore how VGICs affect the metabolism of chondrocytes and their surrounding tissues, which will help clinicians and pharmacists to develop more effective targeted drugs to alleviate the progression of OA disease.

13.
Wiad Lek ; 76(6): 1491-1498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463387

RESUMO

OBJECTIVE: The aim: To establish patterns of structural and functional changes in internal organs, including kidneys, under the conditions of exposure to scorpion venom toxins. PATIENTS AND METHODS: Materials and methods: A thorough literature analysis was conducted on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. When processing the search results, we chose the newest publications up to 5 years old or the most thorough publications that vividly described the essence of our topic. CONCLUSION: Conclusions: The venom of various species of scorpions exhibits a wide range of biological activity. Acting on the structures of the central and peripheral nervous system, the toxins of scorpion venom cause the development of paralysis, convulsions, brain inflammation, hemorrhagic and ischemic strokes. Under conditions of influence on the cardiovascular system, damage to the endothelial lining of the vascular wall, disturbances in heart rhythm, conduction, and the development of destructive changes in the myocardium are characteristic. Data on kidney damage due to scorpion bites require a more detailed study, as information on microscopic and submicroscopic changes in the structure of the organ is too limited. However, cases of the development of tubular necrosis, interstitial nephritis, and kidney infarction are currently known.


Assuntos
Venenos de Escorpião , Humanos , Rim , Miocárdio , Venenos de Escorpião/química
15.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37242439

RESUMO

5-chloro-2-guanidinobenzimidazole (ClGBI), a small-molecule guanidine derivative, is a known effective inhibitor of the voltage-gated proton (H+) channel (HV1, Kd ≈ 26 µM) and is widely used both in ion channel research and functional biological assays. However, a comprehensive study of its ion channel selectivity determined by electrophysiological methods has not been published yet. The lack of selectivity may lead to incorrect conclusions regarding the role of hHv1 in physiological or pathophysiological responses in vitro and in vivo. We have found that ClGBI inhibits the proliferation of lymphocytes, which absolutely requires the functioning of the KV1.3 channel. We, therefore, tested ClGBI directly on hKV1.3 using a whole-cell patch clamp and found an inhibitory effect similar in magnitude to that seen on hHV1 (Kd ≈ 72 µM). We then further investigated ClGBI selectivity on the hKV1.1, hKV1.4-IR, hKV1.5, hKV10.1, hKV11.1, hKCa3.1, hNaV1.4, and hNaV1.5 channels. Our results show that, besides HV1 and KV1.3, all other off-target channels were inhibited by ClGBI, with Kd values ranging from 12 to 894 µM. Based on our comprehensive data, ClGBI has to be considered a non-selective hHV1 inhibitor; thus, experiments aiming at elucidating the significance of these channels in physiological responses have to be carefully evaluated.

16.
Cells ; 12(8)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190119

RESUMO

Brain channelopathies are a group of neurological disorders that result from genetic mutations affecting ion channels in the brain. Ion channels are specialized proteins that play a crucial role in the electrical activity of nerve cells by controlling the flow of ions such as sodium, potassium, and calcium. When these channels are not functioning properly, they can cause a wide range of neurological symptoms such as seizures, movement disorders, and cognitive impairment. In this context, the axon initial segment (AIS) is the site of action potential initiation in most neurons. This region is characterized by a high density of voltage-gated sodium channels (VGSCs), which are responsible for the rapid depolarization that occurs when the neuron is stimulated. The AIS is also enriched in other ion channels, such as potassium channels, that play a role in shaping the action potential waveform and determining the firing frequency of the neuron. In addition to ion channels, the AIS contains a complex cytoskeletal structure that helps to anchor the channels in place and regulate their function. Therefore, alterations in this complex structure of ion channels, scaffold proteins, and specialized cytoskeleton may also cause brain channelopathies not necessarily associated with ion channel mutations. This review will focus on how the AISs structure, plasticity, and composition alterations may generate changes in action potentials and neuronal dysfunction leading to brain diseases. AIS function alterations may be the consequence of voltage-gated ion channel mutations, but also may be due to ligand-activated channels and receptors and AIS structural and membrane proteins that support the function of voltage-gated ion channels.


Assuntos
Segmento Inicial do Axônio , Canalopatias , Humanos , Segmento Inicial do Axônio/metabolismo , Axônios/metabolismo , Canalopatias/metabolismo , Canais Iônicos/metabolismo , Encéfalo/metabolismo , Convulsões/metabolismo
17.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034689

RESUMO

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described loss of voltage sensitivity and cooperativity of the sensor and inhibition of repetitive firing. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Heterozygous and homozygous R306C mice exhibited pronounced hyperactivity, altered susceptibility to flurothyl and kainic acid induced-seizures, and frequent, long runs of spike wave discharges on EEG. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.

18.
Front Cell Neurosci ; 17: 1096823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020846

RESUMO

Homeostasis is a precondition for any physiological system of any living organism. Nonetheless, models of learning and memory that are based on processes of synaptic plasticity are unstable by nature according to Hebbian rules, and it is not fully clear how homeostasis is maintained during these processes. This is where theoretical and computational frameworks can help in gaining a deeper understanding of the various cellular processes that enable homeostasis in the face of plasticity. A previous simplistic single compartmental model with a single synapse showed that maintaining input/output response homeostasis and stable synaptic learning could be enabled by introducing a linear relationship between synaptic plasticity and HCN conductance plasticity. In this study, we aimed to examine whether this approach could be extended to a more morphologically realistic model that entails multiple synapses and gradients of various VGICs. In doing so, we found that a linear relationship between synaptic plasticity and HCN conductance plasticity was able to maintain input/output response homeostasis in our morphologically realistic model, where the slope of the linear relationship was dependent on baseline HCN conductance and synaptic permeability values. An increase in either baseline HCN conductance or synaptic permeability value led to a decrease in the slope of the linear relationship. We further show that in striking contrast to the single compartment model, here linear relationship was insufficient in maintaining stable synaptic learning despite maintaining input/output response homeostasis. Additionally, we showed that homeostasis of input/output response profiles was at the expense of decreasing the mutual information transfer due to the increase in noise entropy, which could not be fully rescued by optimizing the linear relationship between synaptic and HCN conductance plasticity. Finally, we generated a place cell model based on theta oscillations and show that synaptic plasticity disrupts place cell activity. Whereas synaptic plasticity accompanied by HCN conductance plasticity through linear relationship maintains the stability of place cell activity. Our study establishes potential differences between a single compartmental model and a morphologically realistic model.

19.
Med Res Rev ; 43(4): 1038-1067, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36916676

RESUMO

Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.


Assuntos
Cânfora , Capsaicina , Humanos , Capsaicina/farmacologia , Transporte de Íons , Canais de Cátion TRPV/metabolismo
20.
J Biol Chem ; 299(3): 102967, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736429

RESUMO

High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.


Assuntos
Proteínas de Bactérias , Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Conformação Proteica , Canais de Sódio Disparados por Voltagem/metabolismo , Bactérias , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...