Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150775, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383832

RESUMO

Proteins belonging to the STAND (signal transduction ATPases with numerous domains) family have been implicated in crucial functions across various signal transduction pathways, encompassing both apoptosis and innate immune responses. In this study, we have identified NWD1, a member of the STAND superfamily, as a gene that regulates neurite outgrowth. This was confirmed by siRNA knockdown assay in E18 neurons. A zebrafish model was utilized to create NWD1 knockdown using the NgAgo-gDNA system, revealing the significant role of NWD1 in neurogenesis. We further revealed that NWD1 siRNA reduced the acetylated tubulin protein, and changed the ratio of soluble and polymerized tubulin. Moreover, we investigated the mechanism underlying the regulation of NWD1-mediated microtubule dynamics, and MAP1B may be a target gene. This research unveiled, for the first time, the potential role of NWD1 in regulating axon outgrowth through modulating the ratio of acetylated tubulin.

2.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261781

RESUMO

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Assuntos
Antocianinas , Capsicum , Filogenia , Proteínas de Plantas , Capsicum/genética , Capsicum/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Repetições WD40/genética , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
3.
Sci Rep ; 14(1): 20717, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237633

RESUMO

To quickly assess slope stability based on field displacement monitoring data, this paper constructs a hybrid optimization model that predicts surface displacement during tunnel excavation in base-overburden slopes. The model combines Wavelet Decomposition (WD) with a Gated Recurrent Unit (GRU), and the GRU's hyperparameters are optimized using an Improved Particle Swarm Optimization algorithm (IPSO). The specific steps are as follows: First, the Wavelet Decomposition (WD) technique is applied to decompose the raw displacement data, extracting features at different time-frequency scales. Next, the Dropout technique is incorporated into the GRU model to prevent overfitting. Additionally, nonlinear inertia weight ω improved cognitive factor c1, and social factor c2 are introduced. The PSO algorithm is improved by integrating crossover and mutation concepts from genetic algorithms. Finally, the IPSO is used to optimize the number of neural units hN, HN, LN and dropout rates D1 and D2 in the GRU network architecture. After constructing the WD-IPSO-GRU model, a comprehensive comparison is made with various swarm intelligence algorithms and state-of-the-art models. The experimental results demonstrate that the WD-IPSO-GRU model significantly improves the prediction accuracy of surface displacement in slopes during tunnel excavation. Compared to directly using raw data for prediction, the introduction of the WD preprocessing technique improved the prediction accuracy at measurement points 01 and 02 by 28% and 45.9%, respectively. Additionally, with the model optimized by IPSO, the prediction accuracy at measurement points 01 and 02 increased by 76% and 56.7%, respectively. The WD-IPSO-GRU model effectively addresses the challenges of extracting features from univariate displacement time-series data and determining the parameters of the GRU network. It improves the prediction accuracy of surface displacement in base-overburden type slopes and demonstrates excellent generalization ability and reliability. The research results validate the potential application of the model in geotechnical engineering and provide strong support for assessing slope stability during tunnel excavation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39323088

RESUMO

BACKGROUND: Nuclear receptor interaction protein (NRIP) is versatile and engages with various proteins to execute its diverse biological function. NRIP deficiency was reported to cause small myofibre size in adult muscle regeneration, indicating a crucial role of NRIP in myoblast fusion. METHODS: The colocalization and interaction of NRIP with actin were investigated by immunofluorescence and immunoprecipitation assay, respectively. The participation of NRIP in myoblast fusion was demonstrated by cell fusion assay and time-lapse microscopy. The NRIP mutants were generated for mechanism study in NRIP-null C2C12 (termed KO19) cells and muscle-specific NRIP knockout (NRIP cKO) mice. A GEO profile database was used to analyse NRIP expression in Duchenne muscular dystrophy (DMD) patients. RESULTS: In this study, we found that NRIP directly and reciprocally interacted with actin both in vitro and in cells. Immunofluorescence microscopy showed that the endogenous NRIP colocalized with components of invadosome, such as actin, Tks5, and cortactin, at the tips of cells during C2C12 differentiation. The KO19 cells were generated and exhibited a significant deficit in myoblast fusion compared with wild-type C2C12 cells (3.16% vs. 33.67%, p < 0.005). Overexpressed NRIP in KO19 cells could rescue myotube formation compared with control (3.37% vs. 1.00%, p < 0.01). We further confirmed that NRIP directly participated in cell fusion by using a cell-cell fusion assay. We investigated the mechanism of invadosome formation for myoblast fusion, which depends on NRIP-actin interaction, by analysing NRIP mutants in NRIP-null cells. Loss of actin-binding of NRIP reduced invadosome (enrichment ratio, 1.00 vs. 2.54, p < 0.01) and myotube formation (21.82% vs. 35.71%, p < 0.05) in KO19 cells and forced NRIP expression in KO19 cells and muscle-specific NRIP knockout (NRIP cKO) mice increased myofibre size compared with controls (over 1500 µm2, 61.01% vs. 20.57%, p < 0.001). We also found that the NRIP mRNA level was decreased in DMD patients compared with healthy controls (18 072 vs. 28 289, p < 0.001, N = 10 for both groups). CONCLUSIONS: NRIP is a novel actin-binding protein for invadosome formation to induce myoblast fusion.

5.
Oncol Rep ; 52(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39329268

RESUMO

Accumulating evidence indicates that the dysregulation of microRNAs (miRNAs or miRs), is associated with human malignancies and suggests a casual role of miRNAs in tumor initiation and progression. Even though it has been discovered that a number of miRNAs play significant parts in the development of colorectal cancer (CRC), it is crucial to comprehend the regulatory functions that other miRNAs play in CRC. Based on GSE183437 and GSE156719 microarray data that were obtained from Gene Expression Omnibus database, candidate miRNAs were researched. The oncogenic effects of miR­25­3p in different malignancies have led to its selection for additional investigation in the present study. The expression of miR­25­3p was verified by reverse transcription­quantitative PCR, and its correlation with clinicopathological characteristics in patients with CRC was then investigated. In vitro assays were conducted to investigate the influence of miR­25­3p on the proliferative and apoptotic behaviors of HCT116 and Caco­2 cells. The present data revealed that miR­25­3p exhibited one of the most significant upregulations in CRC tissues and cell lines. The expression levels of miR­25­3p were found to be intimately correlated with tumor size, distant metastasis, tumor­node­metastasis stage, and shorter overall survival rate. In terms of functionality, the downregulation of miR­25­3p led to the inhibition of cellular proliferation and the enhancement of apoptosis in both HCT116 and Caco­2 cell lines. The critical tumor suppressor F­box and WD repeat containing domain 7 (FBXW7) was identified as a direct molecular target for miR­25­3p, with an inverse relationship observed between the two in neoplastic tissues. Subsequent studies demonstrated that the tumor suppressive effects of miR­25­3p inhibitor were effectively negated by the silencing of FBXW7. Moreover, the ability of FBXW7 to inhibit the expression of several oncogenes was deemed essential for countering the anticancer effects mediated by miR­25­3p downregulation. These findings posit miR­25­3p as a promising therapeutic target and prognostic indicator for CRC.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Proteína 7 com Repetições F-Box-WD , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Masculino , Feminino , Proliferação de Células/genética , Pessoa de Meia-Idade , Células HCT116 , Apoptose/genética , Células CACO-2 , Idoso , Prognóstico , Adulto , Carcinogênese/genética
6.
Hum Exp Toxicol ; 43: 9603271241279166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190898

RESUMO

Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) exhibits high expression in lung adenocarcinoma (LUAD) tissues and cells; however, its function in arsenic-induced toxicological responses remains unclear. This study aimed to investigate BRWD3 expression in response to arsenic-induced conditions and its impact on the proliferation and apoptosis of LUAD cell line SPC-A1 upon BRWD3 knockdown. The results revealed a decrease in BRWD3 expression in SPC-A1 cells treated with sodium arsenite (NaAsO2), but not sodium arsenite's metabolites. BRWD3 knockdown suppressed cell proliferation and induced apoptosis in SPC-A1 cells. Western blot analysis revealed that BRWD3 knockdown resulted in the upregulation of p53, phospho-p53-Ser392, and its downstream factors including MDM2, Bak, and Bax. Additionally, we observed the downregulation of p65, phospho-p65-Ser276, phospho-p65-Ser536, and its downstream factors, including IκBα, BIRC3, XIAP and CIAP1. Moreover, polymerase chain reaction analysis showed that BRWD3 knockdown also resulted in the downregulation of proliferation-related genes and upregulation of apoptosis-related genes. In conclusion, BRWD3 mediated proliferation and apoptosis via the p53 and p65 pathways in response to arsenic exposure, suggesting potential implications for LUAD treatment through BRWD3 downregulation by arsenic.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Proliferação de Células , Regulação para Baixo , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Arsênio/toxicidade , Compostos de Sódio/toxicidade , Arsenitos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
7.
AME Case Rep ; 8: 80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091553

RESUMO

Background: Wilson's disease (WD) is a rare genetic disorder characterized by copper accumulation in the body, leading to a spectrum of health issues, such as liver disease, neurological disturbances, and psychiatric disorders. In recent years, there has been increasing recognition that WD can also result in osteoarticular defects. Research has shed light on the potential of WD to cause these findings, which in some instances, can progress to osteoarthritis and persistent pain. However, the exact pathophysiological process through which WD leads to osteochondral defects remains unclear. Case Description: We present a case of a 30-year-old male diagnosed with WD exhibiting musculoskeletal symptoms. The patient's medical history revealed chronic intermittent knee pain. Radiographic and magnetic resonance imaging (MRI) studies revealed a substantial osteochondral lesion with high-grade chondral fissuring. This report reviews the proposed pathophysiology of orthopedic pathology in WD, offers an updated literature review, and provides clinical recommendations for management. Treatment options including nonsurgical options and surgery are discussed. Conclusions: This case underscores the significance of identifying the orthopedic manifestations of WD, even in the absence of classic signs and symptoms. Any WD patient suspected of having osteoarticular defects should be thoroughly evaluated, with a low threshold for initiating imaging studies. Moreover, treatment plans should be tailored to the patient's specific presentation, emphasizing the importance of individualized patient care. This case highlights key findings in WD and provides important insights, particularly on the clinical relevance of osteoarticular defects in WD, the potential application of nonsurgical and surgical treatments, and the importance of individualized patient care in the management of WD.

8.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179961

RESUMO

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Vírus da Febre Aftosa , Técnicas de Inativação de Genes , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Repetições WD40/genética , Sistemas CRISPR-Cas , Febre Aftosa/virologia
9.
Plant J ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152711

RESUMO

Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.

10.
J Virol ; 98(9): e0102024, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194235

RESUMO

Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE: MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.


Assuntos
Imunidade Inata , Vírus do Sarampo , Sarampo , Replicação Viral , Vírus do Sarampo/fisiologia , Vírus do Sarampo/genética , Humanos , Sarampo/virologia , Sarampo/metabolismo , Corpos de Inclusão Viral/metabolismo , Interações Hospedeiro-Patógeno , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Células HEK293 , Estresse Fisiológico , RNA de Cadeia Dupla/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais
11.
Insect Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012243

RESUMO

Successful bisexual reproduction requires interactions between males and females. Male-derived seminal fluid proteins (SFPs) transferred to females during mating profoundly affect females from pre- to post-mating, and the subsequent shift in female physiology enhances their fertility. SFPs have important evolutionary implications for the fitness of many insects. However, little is known about how females respond to male SFPs. In this study, we identified a male-derived SFP-phospholipase A2 (PLA2) in Ophraella communa. PLA2 is a vital enzyme in eicosanoid biosynthesis; however, it has not been identified as an insect SFP. We found that OcPLA2 is specifically expressed in males, especially in the male accessory glands (MAGs); it is transferred to the female during mating and functions as an SFP to enhance fertility. The expression of a female-derived gene encoding the WD repeat-containing protein 46 (WD46) was upregulated when OcPLA2 entered the female reproductive tract, and this contributed to female egg production by increasing triacylglycerol lipase (TGL) gene expression and the triglyceride (TG) content. This is the first study to identify PLA2 as an SFP in insects. Our findings also shed light on the regulatory role of OcPLA2 in beetle reproduction; the expression of OcPLA2 is initially correlated with female WD46 expression and later with the decline in TGL gene expression and the TG content. This represents a unique mechanism of reproductive regulation by an SFP.

12.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876305

RESUMO

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Assuntos
Repetição de Anquirina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células HEK293 , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Fosforilação , Microscopia Crioeletrônica , Ligação Proteica
13.
Front Plant Sci ; 15: 1390461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863548

RESUMO

Introduction: The WD40 gene family, prevalent in eukaryotes, assumes diverse roles in cellular processes. Spartina alterniflora, a halophyte with exceptional salt tolerance, flood tolerance, reproduction, and diffusion ability, offers great potential for industrial applications and crop breeding analysis. The exploration of growth and development-related genes in this species offers immense potential for enhancing crop yield and environmental adaptability, particularly in industrialized plantations. However, the understanding of their role in regulating plant growth and development remains limited. Methods: In this study, we conducted a comprehensive analysis of WD40 genes in S. alterniflora at the whole-genome level, delving into their characteristics such as physicochemical properties, phylogenetic relationships, gene architecture, and expression patterns. Additionally, we cloned the TTG1 gene, a gene in plant growth and development across diverse species. Results: We identified a total of 582 WD40 proteins in the S. alterniflora genome, exhibiting an uneven distribution across chromosomes. Through phylogenetic analysis, we categorized the 582 SaWD40 proteins into 12 distinct clades. Examining the duplication patterns of SaWD40 genes, we observed a predominant role of segmental duplication in their expansion. A substantial proportion of SaWD40 gene duplication pairs underwent purifying selection through evolution. To explore the functional aspects, we selected SaTTG1, a homolog of Arabidopsis TTG1, for overexpression in Arabidopsis. Subcellular localization analysis revealed that the SaTTG1 protein localized in the nucleus and plasma membrane, exhibiting transcriptional activation in yeast cells. The overexpression of SaTTG1 in Arabidopsis resulted in early flowering and increased seed size. Discussion: These outcomes significantly contribute to our understanding of WD40 gene functions in halophyte species. The findings not only serve as a valuable foundation for further investigations into WD40 genes in halophyte but also offer insights into the molecular mechanisms governing plant development, offering potential avenues in molecular breeding.

14.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730747

RESUMO

Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing water amount, increasing workability, homogeneity, plasticity and the non-segregation of mortars and grouts, improving mechanical properties and resistance to destructive environments. SPs in cement could have an impact on the long-term safety of the disposals of radioactive waste. These organic agents can leach from the cementitious matrix into groundwater and may affect the migration behaviour of radionuclides. The detailed chemical composition and other characteristics of the cement (CEM I 42.5 R, Sweden) used for the leaching experiments were evaluated. It contained mainly CaO (52.51 ± 1.37, %), and the surface area of the cement particles was 13.2 ± 1.3 m2/g. An insignificant increase in pH (from 12.6 ± 0.1 to 12.8 ± 0.1) was observed for the leachates over 10 days. A commercially available cement superplasticizer based on polymelamine sulphonate (PMS) Peramin SMF10 (Peramin AB, Sweden) was chosen for the research. The product's chemical composition was analysed using wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, while other physico-chemical properties of the PMS superplasticizer were assessed by Raman spectroscopy and thermo-gravimetric analysis. In aqueous solutions and powders of PMS, the same most intensive features were observed at 774 cm-1 (ring out-of-plane deformation), 977 cm-1 (C-N-C bending, SO stretching) and 1055 cm-1 (C-N=C bending) in the Raman spectra. At up to 270 °C, the polymer was thermally stable. Raman and UV/Vis spectroscopies were used to assess the rate of the alkaline degradation of PMS superplasticizer in different aqueous solutions. No changes were observed in the hydrolytic solutions with any of the above analytical methods over a period of 3 years. The results obtained revealed a good thermal and chemical stability (in highly alkaline media, pH = 9.9-12.9) of the PMS polymer.

15.
Microbiol Spectr ; 12(7): e0045324, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38814079

RESUMO

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inclusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor-associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen-activated protein kinase kinase kinase 2 (MEKK2), and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection.IMPORTANCEChlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis-secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrated that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections but also in understanding the role of TRAF7 in cancer.


Assuntos
Proteínas de Bactérias , Infecções por Chlamydia , Chlamydia trachomatis , Interações Hospedeiro-Patógeno , Humanos , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Células HeLa , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/imunologia , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Imunidade Inata , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293
16.
Cell Rep ; 43(3): 113886, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430516

RESUMO

The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-ß induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.


Assuntos
Poliadenilação , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Imunidade Inata
17.
Vet Med Sci ; 10(3): e1366, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527110

RESUMO

BACKGROUND: DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES: In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS: We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS: We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS: The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.


Assuntos
Doenças do Cão , Proteína do Grupo de Complementação N da Anemia de Fanconi , Neoplasias Mamárias Animais , Animais , Cães , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/veterinária , Neoplasias da Mama/patologia , Carcinogênese , Doenças do Cão/genética , Doenças do Cão/patologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/química , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Mutação , Proteínas Supressoras de Tumor/genética
18.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543452

RESUMO

The growth of the Urban Air Mobility (UAM) industry emphasizes the need for considerable study into assembly procedures and dependability to guarantee its effective integration into air transport networks. In this context, this study seeks to evaluate the mechanical characteristics of bolted joint Carbon Fiber Reinforced Plastic (CFRP), with a particular emphasis on bearing strength. By altering the w/D (specimen width to hole diameter) and e/D (distance between hole center and specimen end to hole diameter) ratios, the study investigates how edge and end distances affect material performance. The study discovered a shift from tension to bearing failure at w/D ratios of 4.0, with maximum bearing strength decreases of 90.50% and 69.96% compared to full bearing failure. Similarly, for e/D ratios of 1.5, 2.0, and 3.0, transitioning from shear to bearing failure at 2.0 resulted in maximum bearing strength losses of 94.90% and 75.96%, respectively. Maintaining a w/D ratio of at least 6.0 and an e/D ratio of at least 3.0 is critical for maintaining maximum performance and stability in CFRP structure design.

19.
Methods Mol Biol ; 2761: 599-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427264

RESUMO

Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Contusões , Ratos , Camundongos , Animais , Roedores , Encéfalo , Modelos Animais de Doenças
20.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397114

RESUMO

Lilium is a genus of important ornamental plants with many colouring pattern variations. Lilium auratum is the parent of Oriental hybrid lilies. A typical feature of L. auratum is the presence of red-orange special raised spots named papillae on the interior tepals. Unlike the usual raised spots, the papillae are slightly rounded or connected into sheets and usually have hairy tips. To elucidate the potential genes regulating papillae development in L. auratum, we performed high-throughput sequencing of its tepals at different stages. Genes involved in the flavonoid biosynthesis pathway were significantly enriched during the colouration of the papillae, and CHS, F3H, F3'H, FLS, DFR, ANS, and UFGT were significantly upregulated. To identify the key genes involved in the papillae development of L. auratum, we performed weighted gene coexpression network analysis (WGCNA) and further analysed four modules. In total, 51, 24, 1, and 6 hub genes were identified in four WGCNA modules, MEbrown, MEyellow, MEpurple, and MEred, respectively. Then, the coexpression networks were constructed, and important genes involved in trichome development and coexpressed with anthocyanin biosynthesis genes, such as TT8, TTG1, and GEM, were identified. These results indicated that the papillae are essentially trichomes that accumulate anthocyanins. Finally, we randomly selected 12 hub genes for qRT-PCR analysis to verify the accuracy of our RNA-Seq analysis. Our results provide new insights into the papillae development in L. auratum flowers.


Assuntos
Lilium , Lilium/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA