Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Environ Pollut ; 358: 124492, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960117

RESUMO

Immobilization and stabilization of heavy metals (HMs) in sulfidic and metallic tailings are critical to long-term pollution control and sustainable ecological rehabilitation. This study aims to unravel immobilization mechanisms of Pb (Ⅱ) in the neoformed hardpan structure resulting from Acidithiobacillus spp. accelerated bioweathering of sulfides in the presence of silicates. It was found that the bioweathered mineral composite exhibited an elevated Pb (Ⅱ) adsorption capacity compared to that of natural weathered mineral composite. A suit of microspectroscopic techniques such as synchrotron-based X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Field-Emission Scanning Electron Microscope (FE-SEM) indicated that secondary Fe-bearing minerals, functional groups, and surface properties in the neoformed hardpan were key factors contributing to Pb (Ⅱ) adsorption and immobilization in ferric-silica microstructures. The underlying mechanisms might involve surface adsorption-complexation, dissolution-precipitation, electrostatic attraction, and ion exchange. Microbial communities within the muscovite groups undergoing bioweathering processes demonstrated distinctive survival strategies and community composition under the prevailing geochemical conditions. This proof of concept regarding Pb (Ⅱ) immobilization in microbial transformed mineral composite would provide the basis for scaling up trials for developing field-feasible methodology to management HMs pollution in sulfidic and metallic tailings in near future.

2.
Bioresour Technol ; 406: 131033, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925400

RESUMO

In this study, Anaerobic Digestion Model No.1 (ADM1) was modified to incorporate changes in biochemical parameters due to solids retention time (SRT) variations. Cattle manure (CM) and thermally hydrolyzed CM were selected for testing. Continuous anaerobic digestion reactors were operated under different SRT conditions ranging from 6.6 to 36.0 days for both samples. The biochemical parameters (kch, kli, kpr, um,ac, um,bu, um,pro, um,va, Kac, Kbu, Kpro, and Kva) for each SRT condition were determined. To modify ADM1, the equations obtained through linear regression were substituted into biochemical parameters as a function of SRT. The modified ADM1 demonstrated superior accuracy compared with conventional ADM1. This study implies the feasibility of optimizing biochemical parameters for modeling in response to changes in environmental variables.

3.
J Environ Manage ; 363: 121328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850916

RESUMO

Antibiotics and organic residues from Tetracycline (TC) and other pharmaceuticals administered to aquatic living organism have negative impacts on aquatic environment by killing-off non-target living organisms and developing antibiotic-resistant bacteria. In this study, Micro-Nano Bubble (MNB) system was used to remove TC residues. MNB system demonstrated good level of degradation efficiency, as resulted in experiment where in time of 100 min, the TC degraded at rate of 82.66% from its initial concentration of TC when the initial concentration was 1 mg/L. When the initial concentration was increased to 10 mg/L, MNB system degraded TC at 64.35% of their initial, this means MNB system demonstrated good level of efficiency for TC removal and indicated that it is more efficient in TC degradation under the conditions of low initial TC concentration and high availability of dissolved oxygen (DO). In the system as the temperature increased there was a significant decrease in DO saturation which was related to the TC complex structure that contain multiple function groups such as amino groups, hydroxyl and carboxyl which possess high strong affinity with oxygen that leads to their adsorption onto bubble surface. This study provides significant insights into the application of MNB system for the removal of organic residues within aquatic ecosystem and underscores the need for further exploration of MNB technology for environmental remediation.


Assuntos
Tetraciclina , Tetraciclina/química , Tetraciclina/análise , Poluentes Químicos da Água/química , Adsorção , Oxigênio/química , Antibacterianos/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38926307

RESUMO

Diversifying energy sources and managing waste biomass are two pressing contemporary issues. The new technology proposed in this study aims to address both by converting waste biomass into energy and fertilizer through the use of a biofuel cell (BFC). The purpose of this study is to assess the environmental impacts associated with this innovative technology through a Life Cycle Assessment (LCA). To achieve the goal, the production and use of the cell were modelled, considering both laboratory-scale operations and industrial-scale approximations. The study explored alternative scenarios, such as sensitivity analyses involving different acids and bases, renewable energy sources, and heat recovery. Comparisons with conventional biomass waste treatments (anaerobic digestion and composting) demonstrated that the BFC technology remains competitive. To further improve the BFC's environmental footprint, efforts should focus on reducing energy requirements and enhancing nutrient recovery during scale-up. These insights are crucial for advancing sustainable waste treatment technologies and maximizing the potential of discarded biomass in an environmentally friendly manner.

5.
Waste Manag ; 183: 132-142, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744165

RESUMO

Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.70 % of the residual vancomycin and all ARGs were removed. The HMs contents in VFR followed the order of manganese (676.2 mg/kg) > zinc (148.6 mg/kg) > chromium (25.40 mg/kg) > copper (17.20 mg/kg), and they were highly bioavailable and easily leached. However, HT and pyrolysis (≥400 °C) substantially reduced the bioavailable fractions and leaching properties of the HMs. After HT and pyrolysis at ≥ 400 °C, the potential ecological risk of HMs in VFR was reduced from considerable to moderate/low levels. The elutriate acute toxicity test suggested that HT and pyrolysis at ≥ 400 °C effectively reduced the toxicity of VFR to an acceptable level (p < 0.05). This study demonstrates that HT and pyrolysis (≥400 °C) are promising methods for treating VFR and detoxifying it, and the treated products are safe for further reutilization.


Assuntos
Fermentação , Pirólise , Vancomicina , Vancomicina/toxicidade , Antibacterianos/toxicidade , Antibacterianos/química , Metais Pesados/toxicidade , Metais Pesados/análise , Testes de Toxicidade , Temperatura Alta
6.
Sci Total Environ ; 934: 173301, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759922

RESUMO

The increase in food waste generation has resulted in significant challenges for its sustainable management. Anaerobic digestion coupled with microalgae-based ponds for digestate treatment can be used as a low-cost eco-friendly technology approach. In this case, microalgal biomass harvested from the ponds may be valorized into bioenergy (biogas) and soil conditioner and/or biofertilizers. The aim of the present study was to evaluate the microalgal biomass produced from a food waste digestate treatment ponds as agricultural fertilizer. For this purpose, microalgal biomass was tested before and after anaerobic digestion and co-digestion with food waste, exploring its potential for valorization. The inorganic fertilizer urea and soil with no fertilization were also used as treatments. The experimental design consisted of applying the treatments in pots cultivated with hybrid grass Brachiaria cv. Sabiá and distributed in randomized blocks in a controlled greenhouse. Microalgal biomass was mainly composed by Scenedesmus sp.. The assessed parameters showed comparable results on plant growth (i.e. number of tillers, fresh and dry matter and Chlorophyll content index) for fresh and digested microalgal biomass and inorganic fertilizer. Furthermore, it was observed that fresh microalgae provided the highest Phosphorus content in the leaf (21 %). Additionally, there were increases of 9 % in Nitrogen and 12 % in organic matter in the soil after applying digested microalgae compared to the control group without any fertilization. Finally, experimental data obtained suggests that microalgae-based biofertilizer holds the potential to replace inorganic fertilizer as a nutrient source. Moreover, it contributes to the valorization of by-products from organic waste treatment.


Assuntos
Fertilizantes , Microalgas , Solo , Fertilizantes/análise , Anaerobiose , Solo/química , Biomassa , Agricultura/métodos , Brachiaria , Nitrogênio/análise , Perda e Desperdício de Alimentos
7.
Environ Sci Technol ; 58(20): 8631-8642, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728100

RESUMO

The global trade of plastic waste has raised environmental concerns, especially regarding pollution in waste-importing countries. However, the overall environmental contribution remains unclear due to uncertain treatment shares between handling plastic waste abroad and domestically. Here, we conduct a life cycle assessment of global plastic waste trade in 2022 across 18 countries and six plastic waste types, alongside three "nontrade" counterfactual scenarios. By considering the required cycling rate, which balances importers' costs and recycling revenues, we find that the trade resulted in lower environmental impacts than treating domestically with the average treatment mix. The trade scenario alone reduced climate change impact by 2.85 million tonnes of CO2 equivalent and mitigated damages to ecosystem quality, human health, and resource availability by 12 species-years, 6200 disability-adjusted life years (DALYs), and 1.4 billion United States dollars (USD in 2013), respectively. These results underscore the significance of recognizing plastic waste trade as a pivotal factor in regulating global secondary plastic production when formulating a global plastics treaty.


Assuntos
Plásticos , Reciclagem , Comércio , Humanos , Mudança Climática , Meio Ambiente
8.
Environ Sci Pollut Res Int ; 31(25): 36716-36727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753237

RESUMO

Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes.


Assuntos
Archaea , Bactérias , Metano , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Bactérias/genética , Anaerobiose , Metano/metabolismo , Filogenia , Reatores Biológicos/microbiologia
9.
Bioresour Technol ; 403: 130871, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782190

RESUMO

Polyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time. Twenty different enzymes from various lipase families were evaluated for hydrolytic activity using substrates mimicking oxidized PE. Among them, Pelosinus fermentans lipase 1 (PFL1) specifically cleaved the ester bonds within the oxidized carbon-carbon backbone. Moreover, PFL1 (6 µM) degraded oxidized PE film, reducing the weight average and number average molecular weights by 44.6 and 11.3 %, respectively, within five days. Finally, structural analysis and molecular docking simulations were performed to elucidate the degradation mechanism of PFL1. The oxidized PE-degrading enzyme reported here will provide the groundwork for advancing PE waste treatment technology and for engineering microbes to repurpose PE waste into valuable chemicals.


Assuntos
Biodegradação Ambiental , Lipase , Oxirredução , Polietileno , Lipase/metabolismo , Lipase/química , Polietileno/química , Simulação de Acoplamento Molecular , Hidrólise
10.
Sci Total Environ ; 939: 173645, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821272

RESUMO

Florfenicol resistance genes (FRGs) are widely present in livestock farms. The aim of this study was to evaluate the removal efficiencies of FRGs as well as the relationships between FRGs, mobile genetic elements (MGEs) and bacterial communities during the natural drying (ND) and anaerobic digestion (AD) processes of manure treatment in swine farms by combining bacterial isolation, quantitative PCR and metagenomic approaches. Solid manure showed a higher abundance of FRGs than fresh manure and was the main contamination source of fexA and fexB in ND farms, whilst biogas slurry displayed a lower abundance of FRGs than the wastewater in AD farms. Moreover, fresh manure and wastewater showed a high abundance of optrA, and wastewater was the main contamination source of cfr in both ND and AD farms. Both optrA/fexA-positive enterococci and cfr/fexA-positive staphylococci were mainly isolated along the farms' treatment processes. The cfr-positive staphylococci were highly prevalent in wastewater (57.14 % - 100 %) and may be associated with nasal-derived cfr-positive porcine staphylococci. An increased abundance of Enterococcus, Jeotgalibaca and Vagococcus in the bacterial community structures may account for the high optrA abundance in wastewater and Jeotgalibaca may be another potential host of optrA. Furthermore, the abundance of FRG-related MGEs increased by 22.63 % after the ND process and decreased by 66.96 % in AD farms. A significant correlation was observed between cfr and ISEnfa4, whereas no significance was found between optrA and IS1216E, although IS1216E is the predominant insertion sequence involved in the transfer of optrA. In conclusion, manure and wastewater represented independent pollution sources of FRGs in swine farms. Associated MGEs might play a key role in the transfer and persistence of FRGs. The AD process was more efficient in the removal of FRGs than the ND method, nevertheless a longer storage of slurry may be required for a complete removal.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Esterco , Tianfenicol , Animais , Tianfenicol/análogos & derivados , Suínos , Farmacorresistência Bacteriana/genética , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Criação de Animais Domésticos , Genes Bacterianos , Bactérias/genética
11.
Sci Total Environ ; 930: 172794, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677421

RESUMO

The rapid urbanization witnessed in developing countries in Asia and Africa has led to a substantial increase in municipal solid waste (MSW) generation. However, the corresponding disposal strategies, along with constraints in land resources and finances, compounded by unorganized public behaviour, have resulted in ineffective policy implementation and monitoring. This lack of systematic and targeted orientation, combined with blind mapping, has led to inefficient development in many areas. This review examines the key challenges of MSW management in developing countries in Asia and Africa from 2013 to 2023, drawing insights from 170 academic papers. Rather than solely focusing on recycling, the study proposes waste sorting at the source, optimization of landfill practices, thermal treatment measures, and strategies to capitalize on the value of waste as more pertinent solutions aligned with local realities. Barriers to optimizing management systems arise from socio-economic factors, infrastructural limitations, and cultural considerations. The review emphasizes the importance of integrating the study area into the circular economy framework, with a focus on enhancing citizen participation in solid waste reduction and promoting recycling initiatives, along with seeking economic assistance from international organizations.

12.
Sci Total Environ ; 927: 172385, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604354

RESUMO

Globally, more than half of the world's regions and populations inhabit psychrophilic and seasonally cold environments. Lower temperatures can inhibit the metabolic activity of microorganisms, thereby restricting the application of traditional biological treatment technologies. Bioelectrochemical systems (BES), which combine electrochemistry and biocatalysis, can enhance the resistance of microorganisms to unfavorable environments through electrical stimulation, thus showing promising applications in low-temperature environments. In this review, we focus on the potential application of BES in such environments, given the relatively limited research in this area due to temperature limitations. We select microbial fuel cells (MFC), microbial electrolytic cells (MEC), and microbial electrosynthesis cells (MES) as the objects of analysis and compare their operational mechanisms and application fields. MFC mainly utilizes the redox potential of microorganisms during substance metabolism to generate electricity, while MEC and MES promote the degradation of refractory substances by augmenting the electrode potential with an applied voltage. Subsequently, we summarize and discuss the application of these three types of BES in low-temperature environments. MFC can be employed for environmental remediation as well as for biosensors to monitor environmental quality, while MEC and MES are primarily intended for hydrogen and methane production. Additionally, we explore the influencing factors for the application of BES in low-temperature environments, including operational parameters, electrodes and membranes, external voltage, oxygen intervention, and reaction devices. Finally, the technical, economic, and environmental feasibility analyses reveal that the application of BES in low-temperature environments has great potential for development.


Assuntos
Fontes de Energia Bioelétrica , Temperatura Baixa , Técnicas Eletroquímicas/métodos , Recuperação e Remediação Ambiental/métodos
13.
Environ Sci Technol ; 58(17): 7240-7255, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625096

RESUMO

Food loss and waste (FLW) comes with significant environmental impacts and thus prevents a sustainable food system transition. Here we conducted a systematic review of 174 screened studies that assessed the environmental impacts of FLW generation and treatment. We found that the embodied impacts of FLW along the supply chain and impacts from FLW treatment received equal attention, but few studies have included both. The reviewed studies show narrow geographical (mostly conducted in industrialized countries) and food supply chain (mostly focused on the consumption stage) coverage. Life cycle analysis (LCA), material flow analysis (MFA), or their combination are the most commonly used to quantify FLW related environmental impacts. More method standardization, integration, and innovation and better FLW data with regional and stage resolution from a first-hand source are badly needed. Among the various proposed mitigation strategies covering technology, economy, behavior, and policy aspects, process optimization and waste management options are the most discussed. Our review calls for a more holistic environmental impact assessment of FLW generation and treatment and analysis of the trade-offs among different environmental impact categories and between supply chain stages, which would better inform relevant policy on effective environmental impact mitigation strategies toward sustainable food systems.


Assuntos
Meio Ambiente , Gerenciamento de Resíduos , Abastecimento de Alimentos , Alimentos , Perda e Desperdício de Alimentos
14.
Plant Methods ; 20(1): 54, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632634

RESUMO

Improper management of agricultural and industrial cotton wastes causes environmental pollution and worsens the climate change challenge. Green recycling of cotton could contribute to a circular economy. One of the economic values of cotton wastes lies in their bioactive components. Two types of cotton wastes-agricultural and industrial-of the species Gossypium barbadense L. Giza 95 were targeted in the current study, aiming to maximize their medicinal value and investigate the anti-inflammatory, hepatoprotective, and antioxidant activities of their phytochemical extracts. Phytochemical extraction was performed using different solvents extraction. An anti-inflammatory effect was tested in carrageenan-induced acute edema in a rat paw model. A carbon tetrachloride chronic model of liver injury was used for the assessment of hepatoprotective potential. Liver enzymes (AST and ALT), oxidative stress markers (MDA and GSH), inflammatory biomarkers (C-reactive protein), and histopathological features were investigated. As a result, ethyl acetate proved to be the solvent of best choice to extract the gossypin polyphenolics, where the extracted amount reached 14,826.2 µg/g, followed by butanol (8751.4 µg/g extract). The chloroform (CHCL3) fraction showed the highest amounts of gossypol (190.7 µg/g extract), followed by petroleum ether. Cotton waste's composition analysis showed a wide range of components, including 33 metabolites such as gossypetin, polyphenolics, and other metabolites that possess therapeutic effects. Both chloroform extract and industrial waste extracts showed superior anti-inflammatory and hepatoprotective effects in comparison to other extracts. All tested extracts (ethyl acetate, chloroform, and industrial waste) showed proper antioxidant activities.

16.
J Environ Manage ; 356: 120609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498961

RESUMO

Improving resource use is a pressing research issue because of the huge potential organic waste market. Composting is a recycling technique, treatment to achieve the dual effect of resource recovery and zero waste. Waste composition varies: for example, chicken manure is rich in protein, straw contains wood fibres, fruit and vegetables contain sugar, and food waste contains starch. When considering combining waste streams for composting, it is important to ask if this approach can reduce overall composting costs while achieving a more concentrated result. Chicken manure, in particular, presents a unique challenge. This is due to its high protein content. The lack of precursor sugars for glucosamine condensation in chicken manure results in lower humus content in the final compost than other composting methods. To address this, we conducted experiments to investigate whether adding sugary fruits and vegetables to a chicken manure composting system would improve compost quality. To improve experimental results, we used sucrose and maltose instead of fruit and vegetable waste. Sugars added to chicken manure composting resulted in a significant increase in humic substance (HS) content, with improvements of 9.0% and 17.4%, respectively, compared to the control. Sucrose and maltose have a similar effect on the formation of humic substances. These results demonstrate the feasibility of composting fruit and vegetable waste with chicken manure, providing a theoretical basis for future composting experiments.


Assuntos
Compostagem , Eliminação de Resíduos , Animais , Esterco , Galinhas , Açúcares , Maltose , Sequestro de Carbono , Solo , Substâncias Húmicas , Verduras , Sacarose , Carbono
17.
Environ Sci Pollut Res Int ; 31(16): 23307-23321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436851

RESUMO

Municipal solid waste management (MSWM) is perceived as a global issue regardless of the place of waste generation. The amount of unmanaged waste is increasing rapidly, along with its impact on the environment and human health. In hilly areas, specifically the North Eastern Region (NER) states of India, due to the unique topography coupled with socio-economic factors, there are inadequate waste management practices marked by insufficient infrastructure, minimal research studies, and limited data availability. This paper comprehensively reviews the existing status of MSWM practices and waste treatment technologies, identifies the challenges, and discusses the prospective approaches for MSWM in NER states of India. NER, is characterized by its hilly terrain and has the most diverse demographic profile in the country. The study highlights the notable increase in waste generation in the urban population in NER. The total amount of waste generated in NER is about 2907 tons per day, with a collection rate of 86.96%, treatment at 31.09%, and landfilling at 33.67%. The biodegradable fraction makes up the majority of waste composition (more than 50%) in NER, followed by recyclables and inert. The existing MSWM consists of waste collection, transportation, and disposal with limited source segregation and treatment. All the states of NER practice open dumping and burning as the primary waste treatment and disposal system. The study discusses the challenges and prospects to ensure effective MSWM in NER. This review is a region-specific study that considers cultural diversity, topography, and socio-economic dynamics. The outcome of this review will be helpful to the researchers and policymakers in making appropriate waste management plans and improve the MSWM system in NER.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Resíduos Sólidos , Conservação dos Recursos Naturais , Índia , Cidades
18.
Environ Technol ; : 1-17, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310325

RESUMO

In dairy manure, a wide array of microorganisms, including many pathogens, survive and grow under suitable conditions. This microbial community offers a tremendous opportunity for studying animal health, the transport of microbes into the soil, air, and water, and consequential impacts on public health. The aim of this study was to assess the impacts of manure management practices on the microbial community of manure. The key novelty of this work is to identify the impacts of various stages of manure management on microbes living in dairy manure. In general, the majority of dairy farms in California use a flush system to manage dairy manure, which involves liquid-solid separations. To separate liquid and solid in manure, Multi-stage Alternate Dairy Effluent Management Systems (ADEMS) that use mechanical separation systems (MSS) or weeping wall separation systems (WWSS) are used. Thus, this study was conducted to understand how these manure management systems affect the microbial community. We studied the microbial communities in the WWSS and MSS separation systems, as well as in the four stages of the ADEMS. The 16S rRNA gene from the extracted genomic DNA of dairy manure was amplified using the NovoSeq Illumina next-generation sequencing platform. The sequencing data were used to perform the analysis of similarity (ANOSIM) and multi-response permutation procedure (MRRP) statistical tests, and the results showed that microbial communities among WWSS and MSS were significantly different (p < 0.05). These findings have significant practical implications for the design and implementation of manure management practices in dairy farms.

19.
J Environ Manage ; 353: 120105, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325282

RESUMO

Food waste has received wide attention due to its hazardous environmental effects, such as soil, water, and air pollution. Evaluating food waste treatment techniques is imperative to realize environmental sustainability. This study proposes an integrated framework, the complex q-rung orthopair fuzzy-generalized TODIM (an acronym in Portuguese for interactive and multi-criteria decision-making) method with weighted power geometric operator, to assess the appropriate technique for food waste. The assessment of food waste treatment techniques can be divided into three phases: information processing, information fusion, and ranking alternatives. Firstly, the complex q-rung orthopair fuzzy set flexibly describes the information with periodic characteristics in the processing process with various parameters q. Then, the weighted power geometric operator is employed to calculate the weight of the expert and form the group evaluation matrix, in which the weight of each input rating depends upon the other input ratings. It can simulate the mutual support, multiplicative preferences, and interrelationship of experts. Next, the generalized TODIM method is employed to rank the food waste treatment techniques, considering experts' psychological characteristics and bounded behavior. Subsequently, a real-world application case examines the practicability of the proposed framework. Furthermore, the sensitivity analysis verifies the validity and stability of the presented framework. The comparative study highlights the effectiveness of this framework using the existing frameworks. According to the result, Anaerobic digestion (0.0043) has the highest priority among the considered alternatives, while Incineration (-0.0009) has the lowest.


Assuntos
Poluição do Ar , Eliminação de Resíduos , Alimentos , Perda e Desperdício de Alimentos , Clima , Lógica Fuzzy
20.
Bioresour Technol ; 397: 130504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423484

RESUMO

While wet waste hydrothermal liquefaction technology has a high biofuel yield, a significant amount of the carbon and nitrogen in the feedstock reports to the aqueous-phase product. Pretreatment of this stream before sending to a conventional wastewater plant is essential or at the very least, advisable. In this work, techno-economic and life-cycle assessments were conducted for the state-of-technology baseline and four aqueous-phase product treatment and monetization options based on experimental data. These options can cut minimum fuel selling prices by up to 13 % and life-cycle greenhouse gas emissions by up to 39 % compared to the baseline. These findings highlight the substantial influence of aqueous produce treatment strategies on the entire wet waste hydrothermal liquefaction process, demonstrating the potential for optimizing economic viability and environmental impact through further research and development of milder treatment methods and diversified by-product valorization pathways.


Assuntos
Meio Ambiente , Gases de Efeito Estufa , Águas Residuárias , Nitrogênio , Biocombustíveis , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...