Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38987521

RESUMO

Anthropogenic activities have been one of the crucial driving factors for water pollution globally, thereby warranting a sustainable strategy for its redressal. In this study, we have developed a hydrogel-biochar nanocomposite for catalytic reduction of water pollutants. To begin with, green synthesis of nickel oxide nanoparticles (NiO NPs) was accomplished from waste kinnow peel extract via the environmentally benign microwave method. The formation of NiO NPs was affirmed from different analytical techniques namely ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive spectroscopy (EDS). The FESEM images revealed spherical nature of NiO NPs. The average particle size was found to be 15.61 nm from XRD data. A novel hydrogel-biochar nanocomposite comprising the green NiO NPs, sunflower meal biochar and chitosan was prepared (Cs-biochar@ NiO) and explored as a nanocatalyst towards catalytic reduction of pollutants such as 4-nitrophenol, potassium hexacyanoferrate (III) and organic dyes methyl orange (MO), Congo red (CR), methylene blue (MB) in the presence of a reducing agent, i.e. NaBH4. Under optimized conditions, the reduction reactions were completed by 120 s and 60 s for 4-NP and potassium hexacyanoferrate (III) respectively and the rate constants were estimated to be 0.044 s-1 and 0.110 s-1. The rate of reduction was found to be faster for the dyes and the respective rate constants were 0.213 s-1 for MO, 0.213 s-1 for CR and 0.135 s-1 for MB. The assessment of the nanocatalyst in the reduction of binary dye systems depicted its selectivity towards the anionic dyes CR and MO. The nanocatalyst displayed effective reduction of dyes in real-water samples collected from different sources. Taken altogether, this study validates the design of sustainable hydrogel-biochar nanocatalyst for the efficient reduction of hazardous anthropogenic water pollutants.

2.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001129

RESUMO

Water pollution greatly impacts humans and ecosystems, so a series of policies have been enacted to control it. The first step in performing pollution control is to detect contaminants in the water. Various methods have been proposed for water quality testing, such as spectroscopy, chromatography, and electrochemical techniques. However, traditional testing methods require the utilization of laboratory equipment, which is large and not suitable for real-time testing in the field. Microfluidic devices can overcome the limitations of traditional testing instruments and have become an efficient and convenient tool for water quality analysis. At the same time, artificial intelligence is an ideal means of recognizing, classifying, and predicting data obtained from microfluidic systems. Microfluidic devices based on artificial intelligence and machine learning are being developed with great significance for the next generation of water quality monitoring systems. This review begins with a brief introduction to the algorithms involved in artificial intelligence and the materials used in the fabrication and detection techniques of microfluidic platforms. Then, the latest research development of combining the two for pollutant detection in water bodies, including heavy metals, pesticides, micro- and nanoplastics, and microalgae, is mainly introduced. Finally, the challenges encountered and the future directions of detection methods based on industrial intelligence and microfluidic chips are discussed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38904714

RESUMO

Hydrogel nanocatalyst composed of nickel oxide (NiO) nanoparticles embedded in PVA-alginate hydrogels were potentially explored toward the reduction of anthropogenic water pollutants. The NiO nanoparticles was accomplished via green method using waste pineapple peel extract. The formation of the nanoparticles was affirmed from different analytical techniques such as UV-Vis, FTIR, XRD, TGA, FESEM, and EDS. Spherical NiO nanoparticles were obtained having an average size of 11.5 nm. The nano NiO were then integrated into PVA-alginate hydrogel matrix forming a nanocomposite hydrogel (PVALg@ NiO). The integration of nano NiO rendered an improved thermal stability to the parent hydrogel. The PVALg@ NiO hydrogel was utilized as a catalyst in the reduction of 4-nitrophenol (4-NP), potassium hexacyanoferrate (III), rhodamine B (RhB), methyl orange (MO), and malachite green (MG) in the presence of a reducing agent, i.e., NaBH4. Under optimized conditions, the reduction reactions were completed by 4.0 min and 3.0 min for 4-NP and potassium hexacyanoferrate (III), respectively, and the rate constant was estimated to be 1.14 min-1 and 2.15 min-1. The rate of reduction was found to be faster for the dyes and the respective rate constants were be 0.17 s-1 for RhB, MG and 0.05 s-1 for MO. The PVALg@ NiO hydrogel nanocatalyst demonstrated a recyclability of four runs without any perceptible diminution in its catalytic mettle. The efficacy of the PVALg@ NiO hydrogel nanocatalyst was further examined for the reduction of dyes in real water samples collected from different sources and the results affirm its high catalytic potential. Thus, this study paves the path for the development of a sustainable hydrogel nanocatalyst for reduction of hazardous pollutants in wastewater treatment.

4.
Environ Technol ; : 1-20, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853669

RESUMO

High concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.

5.
Environ Technol ; : 1-15, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820597

RESUMO

Plasticisers, such as dibutyl phthalate (DBP), are contaminants of emerging concern (CEC) that are toxic to living things and the environment. Unlike hydrophilic pollutants, DBP shows the characteristics of hydrophilic and hydrophobic nature which makes its degradation or removal difficult using conventional treatment technologies. The current study explored the potential of photocatalysis followed by electrocatalytic oxidation (PC + EC) using vanadium pentoxide (V2O5) and carbon-coated titanium (C/Ti) anode for the removal of 75 mg L-1 DBP from water. The structural stability and changes in the functional groups after treatment of the catalyst were determined using powder XRD and FTIR studies that found the catalyst structure to be stable. Optimization studies showed that UV-A (315-400 nm) irradiation source, 112 mA cm-2 current density, 50 mg L-1 catalyst dosage, 360 min PC, 210 min EC at pH 3 and 20 mM sodium sulphate managed to degrade 99.5% of DBP with 97% COD and 87.7% TOC removal. Compared to electrocatalytic oxidation (EC), PC + EC showed 40% higher TOC removal. Reusability studies found the reduction of 45% for COD removal after four treatment cycles with V2O5, while the anode material showed no considerable decrease in its degradation efficiency. High-resolution mass spectrometry (HRMS) studies established that complete degradation was preceded by the oxidation of DBP to phthalic anhydride and phthalic acid responsible for the increase in TOC during the initial treatment period. Overall, this study lays out insights for the application of photo-electrocatlytic oxidation for the removal of ubiquitous poorly soluble water pollutants such as phthalates.

6.
Mikrochim Acta ; 191(6): 357, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814503

RESUMO

Super hydrophobic porous silicon surface is prepared using a wet chemical synthesis route. Scanning electron microscopic investigation confirms a correlation between pore size and reaction time. SERS substrates are prepared by silver nanoparticle deposition on porous silicon surface. They exhibit excellent characteristics in terms of sensitivity, reproducibility, stability, and uniformity. They could detect rhodamine 6G in femtomolar range with SERS enhancement factor of ~ 6.1 × 1012, which is best ever reported for these substrates. Molecule-specific sensing of water pollutants such as methylene blue, glyphosate, and chlorpyrifos, is demonstrated for concentrations well below their permissible limits along with excellent enhancement factors. Porous silicon substrate functionalized with Ag nanoparticles demonstrates to be a promising candidate for low-cost, long-life, reliable sensors for environmental conservation applications.

7.
Ecotoxicol Environ Saf ; 277: 116383, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663192

RESUMO

Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.


Assuntos
Escherichia coli , Estresse Oxidativo , Ácido Vanílico , Ácido Vanílico/farmacologia , Ácido Vanílico/toxicidade , Escherichia coli/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Testes de Mutagenicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Anti-Infecciosos/toxicidade , Anti-Infecciosos/farmacologia
8.
Environ Sci Pollut Res Int ; 31(18): 26942-26960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503954

RESUMO

This study investigated the single and multicomponent adsorption of three emerging pollutants, the basic dyes Rhodamine 6G (R6G), Auramine-O (AO), and Brilliant Green (BG) by using hydroxyapatite synthesized from Pirarucu scales as adsorbent (HAP). The adsorption process was studied using seven different systems: AO-single, R6G-single, BG-single, R6G + AO, BG + AO, BG + R6G, and R6G + AO + BG. For kinetics, the initial concentration of each adsorbate per system was 50 mg/L, the results showed that the singular adsorption of these dyes was best-represented by the pseudo-second-order model (qAO = 62.54 mg/g, qR6G = 7.91 mg/g, qBG = 62.40 mg/g), however, the multicomponent adsorption was well-fitted by a pseudo-first-order model (ternary system: qAO = 56.21 mg/g, qR6G = 14.95 mg/g, qBG = 60.62 mg/g). For equilibrium, the initial concentration of each adsorbate per system was 10-300 mg/L, and the single adsorption systems were best represented by the Langmuir model. Nonetheless, the results displayed in the multicomponent mixture showed the presence of inflection points of AO and R6G whenever BG was present in solution with C0 > 150 mg/L, thus indicating that BG has greater affinity with HAP. The presence of inflection points in the curves represented a limitation for applying traditional equilibrium models, thus, an artificial neural network (ANN) was applied to non-linear curve fit this process and satisfactorily predicted the kinetics and equilibrium data. Finally, the analysis of thermodynamics for the ternary mixture revealed that the adsorption process is spontaneous (ΔG < 0), endothermic (ΔH > 0), and increases to a disorganized state as the temperature rises (ΔS > 0).


Assuntos
Corantes , Durapatita , Compostos de Amônio Quaternário , Poluentes Químicos da Água , Adsorção , Cinética , Durapatita/química , Corantes/química , Poluentes Químicos da Água/química , Rodaminas/química
9.
Nanomaterials (Basel) ; 14(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38470799

RESUMO

Water pollution poses a significant threat to both human health and ecosystem integrity. Chemical pollutants such as dyes and pesticides affect the water quality and endanger aquatic life. Among the methods for water purification from organic pollutants, photodegradation is certainly a valid technique to decrease such contaminants. In this work, pristine NiO, ZnO, and NiO-ZnO photocatalysts were synthesized by the homogeneous co-precipitation method. X-ray diffraction confirms the formation of a photocatalyst consisting of ZnO (Hexagonal) and NiO (Cubic) structures. The crystalline size was calculated by the Scherrer formula, which is 19 nm for the NiO-ZnO photocatalyst. The band gap measurements of the prepared samples were obtained using the Tauc Plot, equation which is 2.93 eV, 3.35 eV and 2.63 eV for NiO, ZnO, and NiO-ZnO photocatalysts, respectively. The photocatalytic performance of NiO-ZnO nanocomposite was evaluated through the degradation of Methylene Blue and Nile Blue dyes under sunlight, and Bentazon herbicide under a UV light. Photocatalyst degradation efficiency was 95% and 97% for Methylene Blue and Nile Blue in 220 min under sunlight while a degradation of 70% for Bentazon after 100 min under UV light source was found.

10.
Environ Res ; 249: 118326, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325784

RESUMO

Activated carbon (AC) based adsorbents derived from waste sludge were utilized to remediate mixed contaminants in wastewater as an integrated waste-to-resource approach promoting a paradigm shift in management of refuse sludge and wastewater. This review specifically focuses on the remediation of constituents of landfill leachate by sludge-based activated carbon (SBAC). The adsorption effectiveness of SBAC for the exclusion of leachate characters including heavy metals, phenols, dyes, phosphates, and phosphorus were explored with regard to modifiers such as pH, temperature, properties of the adsorbent including functional groups, initial doses of absorbent and adsorbate, and duration of exposure to note the impact of each parameter on the efficiency of adsorption of the sludge adsorbent. Through the works of various researchers, it was noted that the properties of the adsorbent, pH and temperature impact the working of SBACs. The pH of the adsorbent by influencing the functional groups. Temperature was expected to have a paramount effect on the adsorption efficiency of the SBACs. The importance of the regeneration and recycling of the adsorbents as well as their leachability is highlighted. Sludge based activated carbon is recommended as a timely, resource-efficient, and sustainable approach for the remediation of wastewater.


Assuntos
Carvão Vegetal , Esgotos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Esgotos/química , Carvão Vegetal/química , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Concentração de Íons de Hidrogênio , Temperatura , Purificação da Água/métodos
11.
Materials (Basel) ; 16(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068246

RESUMO

The modern lifestyle has increased our utilization of pollutants such as heavy metals, aromatic compounds, and contaminants that are of rising concern, involving pharmaceutical and personal products and other materials that may have an important environmental impact. In particular, the ultimate results of the intense use of highly stable materials, such as heavy metals and chemical restudies, are that they turn into waste materials, which, when discharged, accumulate in environmental water bodies. In this context, the present review presents the application of metal-organic frameworks (MOFs) in electrochemiluminescent (ECL) sensing for water pollutant detection. MOF composites applied as innovative luminophore or luminophore carriers, materials for electrode modification, and the enhancement of co-reaction in ECL sensors have enabled the sensitive monitoring of some of the most common contaminants of emerging concern such as heavy metals, volatile organic compounds, pharmaceuticals, industrial chemicals, and cyanotoxins. Moreover, we provide future trends and prospects associated with ECL MOF composites for environmental sensing.

12.
Bioinformation ; 19(9): 901-907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928494

RESUMO

Increased amounts of toxicants may cause sever health issues in humans as well as in aquatic life. Scientists are developing new technologies to combat these problems. Biological methods of detoxification are always beneficial for the environment. Pseudomonas fluorescens is known for its detoxification capacity. In this study Pseudomonas fluorescens stains were isolated from different locations of the Ha'il region, Saudia Arabia. The microbial strain AM-1 displayed resistance to heavy metals (Cr6+, Ni2+, Cd2+, Pb2+) and pesticides (BHC, 2,4-D, Mancozeb) at pollutant levels typical of highly contaminated areas. Additionally, AM-1 exhibited substantial detoxification potential, reducing toxicity by 40.67% for heavy metals and 47.4% for pesticides at 3x concentrations. These findings suggest that the AM-1 strain supports environmental remediation and pollution mitigation. Atomic absorption spectrometry (AAS) results exhibited bioremediation efficiency for metals Cr6+, Ni2+, and Pb2+ using immobilized cells of P. fluorescens AM-1 isolate, estimated to be 60.57%, 68.4%, and 53.93% respectively. These findings show that AM-1 strain has a potential role in bioremediation of water pollutants and may have future implications in wastewater treatment.

13.
J Environ Manage ; 345: 118895, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659370

RESUMO

Over the past decade, there has been a substantial increase in research investigating the potential of graphitic carbon nitride (g-C3N4) for various environmental remediations. Renowned for its photocatalytic activity under visible light, g-C3N4 offers a promising solution for treating water pollutants. However, traditional g-C3N4-based photocatalysts have inherent drawbacks, creating a disparity between laboratory efficacy and real-world applications. A primary practical challenge is their fine-powdered form, which hinders separation and recycling processes. A promising approach to address these challenges involves integrating magnetic or floating materials into conventional photocatalysts, a strategy gaining traction within the g-C3N4-based photocatalyst arena. Another emerging solution to enhance practical applications entails merging experimental results with contemporary computational methods. This synergy seeks to optimize the synthesis of more efficient photocatalysts and pinpoint optimal conditions for pollutant removal. While numerous review articles discuss the laboratory-based photocatalytic applications of g-C3N4-based materials, there is a conspicuous absence of comprehensive coverage regarding state-of-the-art research on improved g-C3N4-based photocatalysts for practical applications. This review fills this void, spotlighting three pivotal domains: magnetic g-C3N4 photocatalysts, floating g-C3N4 photocatalysts, and the application of machine learning to g-C3N4 photocatalysis. Accompanied by a thorough analysis, this review also provides perspectives on future directions to enhance the efficacy of g-C3N4-based photocatalysts in water purification.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Luz , Aprendizado de Máquina , Água
14.
Chemosphere ; 341: 139955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652247

RESUMO

The photocatalytic removal of toxic chemical pollutants from wastewater has garnered significant attention in recent times owing to its notable removal efficiency, cost-effectiveness, and eco-friendly characteristics. Nonetheless, this catalytic process necessitates augmented charge separation and distinctive interface properties to facilitate catalytic reactions for water treatment applications. Therefore, in the current study, novel g-C3N4/Ni-doped ZrO2 heterostructured hybrid catalysts have been synthesized via a hydrothermal approach. Microscopic studies reveal that ZrO2 nanospheres were distributed on the layered-like 2D structure of g-C3N4 nanosheets. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) characterizations were employed to investigate the impact of bandgap, electron-hole recombination, charge transfer, and interface properties on the catalytic performance of g-C3N4/ZrO2 hybrids. XRD analysis confirmed that the Ni-ions do not disturb the host lattice crystal structure and heterostructure development between g-C3N4 and doped ZrO2 sample. Structurally, Ni-doped nanoparticles were found to be equally superficially dispersed on g-C3N4 sheets. Optical analysis results suggest that the hybrid catalyst possesses a narrow bandgap of 2.56 eV. The synthesized photocatalyst degraded rhodamine B (RhB) and tetracycline (TC) with ∼92% and ∼89% degradation efficiency, respectively. Heterostructured hybrid catalysts showed superior degradation rate constants than other catalysts. This might be attributed to the sufficient separation of electron-hole due to the development of a heterojunction. The radical scavenging experiments suggested that O2●- and ●OH radicals contributed substantially to the dye elimination activity of the composite. Therefore, the synthesized novel nanohybrid catalysts in this study present an efficient and straightforward synthesis method for the efficient removal of toxins from wastewater under visible light irradiation.


Assuntos
Poluentes Ambientais , Nanosferas , Níquel , Fotólise , Águas Residuárias , Luz
15.
Chemosphere ; 339: 139745, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37558003

RESUMO

Non-targeted and suspect screening analysis is gaining approval across the scientific and regulatory community to monitor the chemical status in the environment and thus environmental quality. These holistic screening analyses provides the means to perform suspect screening and go beyond to discover previously undescribed chemical pollutants in environmental samples. In a case study, we developed and optimized a high-resolution tandem mass spectrometry platform hyphenated with anion exchange chromatography to screen drinking water samples in Denmark. The optimized non-targeted screening method was able to detect anionic and polar compounds and was successfully applied to drinking water from two drinking water facilities. Following a data analysis pipeline optimization, anionic pesticide residues and other environmental contaminants were detected at confidence identification level 1 such as dimethachlor ESA, mecoprop, and dichlorprop in drinking water. In addition to these three substances, it was possible to detect another 1662 compounds, of which 97 were annotated at confidence identification level 2. More research is urgently needed to health risk prioritize the detected substances and to determine their concentrations.


Assuntos
Água Potável , Poluentes Químicos da Água , Espectrometria de Massas em Tandem , Água Potável/análise , Xenobióticos , Poluentes Químicos da Água/análise , Cromatografia por Troca Iônica , Dinamarca
16.
Chemosphere ; 339: 139713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549744

RESUMO

Wastewater treatment is critically important for the existence of life on earth; however, this approach involves the removal of toxic metal contaminants and organic pollutants, requiring efficient adsorbent materials. Within this agenda, metal-organic frameworks (MOFs) appear to be potential materials due to their unique properties as efficient adsorbents, effective photocatalysts, and reliable semi-permeable membranes. Therefore, MOFs have undergone various modifications over the years without desirable success to improve adsorption capacity, hydro-stability, reaction kinetics, and reusability. Therefore, scientists around the world got engaged in MOF research for novel modifications, including defect engineering, carbonization, and membrane fabrication, at the laboratory scale. This review focuses on developing MOF-based adsorbents, photocatalysts, and semi-permeable membranes for wastewater treatment since 2015, emphasizing their structural-functional relationships. Finally, the challenges and opportunities with MOFs in wastewater treatment are also underlined for future efforts.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Purificação da Água , Águas Residuárias , Adsorção
17.
Bioprocess Biosyst Eng ; 46(11): 1513-1531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458833

RESUMO

The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Águas Residuárias , Lacase/química , Enzimas Imobilizadas/química , Água , Poluentes Químicos da Água/metabolismo
18.
J Environ Manage ; 345: 118564, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421724

RESUMO

Rapid urbanization has led to a significant increase in water consumption and wastewater discharge. Balancing the relationship between urbanization development and water pollutants emissions is crucial for the sustainable development of the country. Given the uneven regional economic development and resource distribution in China, exploring the relationship between new urbanization and water pollution emissions cannot be limited to a single perspective such as population urbanization. This study developed a comprehensive evaluation index system for new urbanization level. Based on data from 30 provincial-level regions in China from 2006 to 2020, a Panel Threshold Regression Model (PTRM) was used to explore the nonlinear relationship between the new urbanization level and water pollution discharge. The research results show that China's new urbanization level (NUBL) and its subsystems, including population urbanization (P-NUBL), economic urbanization (E-NUBL), and spatial urbanization (SP-NUBL), all have a double threshold effect on chemical oxygen demand (COD) emissions. The promoting effect of NUBL and E-NUBL on COD emissions gradually increased in the later stage of the study. P-NUBL and SP-NUBL show a trend of inhibiting COD emissions after crossing the dual threshold values. Social urbanization (S-NUBL) and ecological urbanization (EL-NUBL) had no threshold effect, but they also had a promoting effect on COD emissions. In addition, the speed of new urbanization in eastern China was significantly faster than that in central and western China, with provinces such as Beijing, Shanghai, and Jiangsu being the first to enter the high threshold stage. The central region began to gradually enter the middle threshold stage, but provinces such as Hebei, Henan, and Anhui are still in the high pollution and high emission stage. The level of new urbanization in western China is relatively low, and future development should prioritize economic construction. Provinces with high thresholds and low water pollution emissions still need to be developed. The results of this study have important implications for promoting the harmonious development of water-saving and sustainable urban development in China.


Assuntos
Urbanização , Poluentes da Água , China , Poluição da Água , Desenvolvimento Econômico
19.
Artigo em Inglês | MEDLINE | ID: mdl-37188436

RESUMO

Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Brasil , Monitoramento Ambiental/métodos , Ecossistema , Poluentes Químicos da Água/toxicidade , Dano ao DNA , Água
20.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241778

RESUMO

The adsorptive performance of mesoporous silica-based materials towards inorganic (metal ions) and organic (dyes) water pollutants was investigated. Mesoporous silica materials with different particle size, surface area and pore volume were prepared and tailored with different functional groups. These materials were then characterised by solid-state techniques, namely vibrational spectroscopy, elemental analysis, scanning electron microscopy and nitrogen adsorption-desorption isotherms, allowing the successful preparation and structural modifications of the materials to be confirmed. The influence of the physicochemical properties of the adsorbents towards the removal of metal ions (Ni2+, Cu2+ and Fe3+) and organic dyes (methylene blue and methyl green) from aqueous solutions was also investigated. The results reveal that the exceptionally high surface area and suitable ζ-potential of the nanosized mesoporous silica nanoparticles (MSNPs) seem to favour the adsorptive capacity of the material for both types of water pollutants. Kinetic studies were performed for the adsorption of organic dyes by MSNPs and large-pore mesoporous silica (LPMS), suggesting that the process follows a pseudo-second-order model. The recyclability along consecutive adsorption cycles and the stability of the adsorbents after use were also investigated, showing that the material can be reused. Current results show the potentialities of novel silica-based material as a suitable adsorbent to remove pollutants from aquatic matrices with an applicability to reduce water pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...