RESUMO
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
RESUMO
Resumen Introducción: Varias presiones antrópicas sufren los ecosistemas acuáticos del piedemonte llanero en Colombia. La respuesta a estresores ambientales aún se desconoce en organismos bioindicadores como Leptohyphidae. Objetivo: Determinar la diversidad de ninfas de Leptohyphidae del río Quenane-Quenanito, en dos periodos hidrológicos contrastantes y su relación con algunas variables fisicoquímicas. Métodos: En diciembre (2014) y febrero (2015) se recolectaron organismos con red Surber en seis estaciones a lo largo del río. Se analizó la diversidad alfa y beta y se aplicó análisis de redundancia y modelos lineales generalizados con el fin de establecer la relación entre los taxones y las variables ambientales. Resultados: Se identificaron 369 organismos pertenecientes a cuatro géneros (Amanahyphes, Traverhyphes, Tricorythopsis y Tricorythodes), dos especies y ocho morfoespecies. Se reporta por primera vez para el departamento del Meta Amanahyphes saguassu. Se registró la mayor diversidad de ninfas en la transición a la sequía y la mayor abundancia en sequía. La diversidad beta señaló que la configuración del ensamblaje cambia a nivel espacial y temporal. Conclusiones: Los organismos de Leptohyphidae prefieren hábitats de corrientes, particularmente en el periodo de sequía, donde hallan alimento (hojarasca, detritos) y refugio para establecerse exitosamente; actividades antrópicas como la urbanización afectan notablemente la diversidad. La alta diversidad registrada en este pequeño río de piedemonte llanero refleja la necesidad de incrementar este tipo de trabajos y esfuerzos de recolección de material de estudio en la región.
Abstract Introduction: Various anthropic pressures affect the aquatic ecosystems of the foothills of Colombia. The response to environmental stressors is still unknown in bioindicator organisms such as Leptohyphidae. Objective: To determine the diversity of Leptohyphidae nymphs of the Quenane-Quenanito river, in two contrasting hydrological periods and its relationship with some physicochemical variables. Methods: In December (2014) and February (2015), organisms were collected with a Surber net at six stations along the current. Alpha and beta diversity was analyzed and redundancy analysis and generalized linear model were applied to establish the relationship between taxa and environmental variables. Results: Were identified 369 organisms belonging to four genera (Amanahyphes, Traverhyphes, Tricorythopsis, and Tricorythodes), two species, and eight morphospecies. Amanahyphes saguassu is reported for the first time for the Meta department. High diversity of Leptohyphidae nymphs was recorded in the transition to drought season and greater abundance in drought. Beta diversity indicated that the configuration of the assemblage changes spatially and temporally. Conclusions: Leptohyphidae organisms prefer fast habitats, particularly in the dry period where they find food (leaf litter, detritus) and shelter to establish themselves successfully; anthropic activities such as urbanization notably affect diversity. The high diversity recorded in this small river in the foothills of the plains reflects the need to increase this type of works and collection efforts of study material in the region.
Assuntos
Animais , Ephemeroptera/classificação , Qualidade da Água , Colômbia , Insetos/classificaçãoRESUMO
Globally, challenges with water and food are two of the most pressing problems people face. Yet hydrologically water-rich environments and rural environments are often overlooked in these discussions due to abundance of natural water resources. Here we test the relationship between water and food insecurity among 270 Tsimane' households in the Bolivian Amazon. Water challenges were evaluated with the Household Water Insecurity Experiences Scale (HWISE), water quality perception, objective water quality analyses, and water access via the JMP drinking water ladder. Food insecurity was measured with the Household Food Insecurity Access Scale (HFIAS), and quantitative measures of food frequency recall were used to further test the water and food insecurity relationship. Using multilevel mixed-effects linear regression, each point increase in HWISE score was associated with 0.47 point (95 % CI: 0.30, 0.62, p < 0.001) higher food insecurity, and households with access to improved water sources had between 1.25 and 1.36 points (95 % CI: -2.61, -0.01, p < 0.05) lower food insecurity compared to households reliant on surface water. These relationships held true independent of quantitative measures of both fish and meat consumption. Using mixed-effects logistic regression analyses, each point increase in HWISE score was associated with 43 % (95 % CI: 1.25-1.66, p < 0.001) increased odds of experiencing severe food insecurity. Households changing what was eaten due to experienced water problems was associated with 2.33 points (95 % CI: 0.41, 4.25, p < 0.05) higher food insecurity. This relationship held true independent of perceived water quality, indicating other structural water problems may be important here in the household water and food insecurity relationship. These results demonstrate that even in water-rich environments, like the Amazon, water and food insecurity are interconnected. Further, despite the challenging conditions, equitable structural interventions, like the development of improved water infrastructure, are critical for the provision of clean drinking water and may simultaneously help alleviate food insecurity.
RESUMO
Lake Burlan, a lentic ecosystem artificially created by untreated runoff from adjacent rice fields, is located in the Amazon region within the dry forests of northern Peru. This body of water plays a fundamental role in agriculture and recreational activities in the area, which are fundamental to the local economy. This research aimed to evaluate the water quality of Lake Burlan using the Water Quality Index of Peru (WQI-PE). In addition, both spatial and depth variations of limnological parameters and trace elements were determined. The WQI-PE was calculated at seven sampling stations at two depths (surface level and one meter), using 18 limnological parameters and nine trace elements. The WQI-PE assessment indicated that the lake water quality ranged from poor to fair for both depths. Statistical analysis showed that nine limnological parameters and five trace elements showed spatial differences across seven sampling stations, while three limnological parameters and two trace elements showed depth-dependent variations. Concentrations of arsenic, cadmium, mercury, and lead were in exceedance of the national and international standards on environmental water quality. Therefore, the water quality of Lake Burlan is affected mainly by the impact of the surrounding rice fields and recreational activities. This research establishes a starting point for future monitoring to assist in the implementation of prevention and mitigation.
RESUMO
Shrimp is one of the most important aquaculture industries. Therefore, we determined the effect of nitrifying-probiotic bacteria on water quality, growth, survival, immune response, and intestinal microbiota of Litopenaeus vannamei cultured without water exchange. In vitro, only Bacillus licheniformis used total ammonia nitrogen (TAN), nitrites, and nitrates since nitrogen bubbles were produced. TAN decreased significantly in the treatments with B. licheniformis and Pediococcus pentosaceus and Leuconostoc mesenteroides, but no differences were observed in nitrites. Nitrates were significantly higher in the treatments with bacteria. The final weight was higher only with bacilli and bacilli and LAB treatments. The survival of shrimp in the bacterial treatments increased significantly, and superoxide anion increased significantly only in lactic acid bacteria (LAB) treatment. The activity of phenoloxidase decreased significantly in the treatments with bacteria compared to the control. Shrimp treated with bacilli in the water showed lower species richness. The gut bacterial community after treatments was significantly different from that of the control. Linoleic acid metabolism was positively correlated with final weight and superoxide anion, whereas quorum sensing was correlated with survival. Thus, bacilli and LAB in the water of hyperintensive culture systems act as heterotrophic nitrifers, modulate the intestinal microbiota and immune response, and improve the growth and survival of shrimp. This is the first report on P. pentosaceus and L. mesenteroides identified as nitrifying bacteria.
RESUMO
Coastal water quality is facing increasing threats due to human activities. Their contamination by sewage discharges poses significant risks to the environment and public health. We aimed to investigate the presence of antibiotic-resistant Enterococcus in beach waters. Over a 10-month period, samples were collected from four beaches in the State of São Paulo (Brazil). Enterococcus isolates underwent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and molecular analysis for accurate genus and species identification. The antimicrobial susceptibility for 14 antibiotics was evaluated using the disc diffusion method followed by a multidrug-resistance (MDR) classification. PCR amplification method was used to detect antimicrobial resistance genes (ARGs). Our findings revealed the prevalence of Enterococcus faecalis, E. faecium and E. hirae. Out of 130 isolates, 118 were resistant to multiple antibiotics. The detection of resistance genes provided evidence of the potential transfer of antibiotic resistance within the environment. Our findings underscore the necessity for continuous research and surveillance to enhance understanding of the pathogenicity and antimicrobial resistance mechanisms of Enterococcus, which is crucial to implement effective measures to preserve the integrity of coastal ecosystems.
Assuntos
Antibacterianos , Enterococcus faecalis , Enterococcus faecium , Streptococcus faecium ATCC 9790 , Brasil , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Antibacterianos/farmacologia , Streptococcus faecium ATCC 9790/efeitos dos fármacos , Streptococcus faecium ATCC 9790/genética , Streptococcus faecium ATCC 9790/isolamento & purificação , Farmacorresistência Bacteriana , Praias , Testes de Sensibilidade Microbiana , Água do Mar/microbiologiaRESUMO
Monitoring of stream water quality is a key element of water resource management worldwide, but methods that are commonly used in temperate habitats may not be appropriate in humid tropical systems. We assessed the influence of four land uses on microbial water quality in 21 streams in the Panama Canal Watershed over a one-year period, using a common culture-based fecal indicator test and 16S rDNA metabarcoding. Each stream was located within one of four land uses: mature forest, secondary forest, silvopasture, and traditional cattle pasture. Culturing detected total coliforms and Escherichia coli across all sites but found no significant differences in concentrations between land uses. However, 16S rDNA metabarcoding revealed variability in the abundance of coliforms across land uses and several genera that can cause false positives in culture-based tests. Our results indicate that culture-based fecal indicator bacteria tests targeting coliforms may be poor indicators of fecal contamination in Neotropical oligotrophic streams and suggest that tests targeting members of the Bacteroidales would provide a more reliable indication of fecal contamination.
Assuntos
Enterobacteriaceae , Monitoramento Ambiental , Fezes , Rios , Microbiologia da Água , Fezes/microbiologia , Rios/microbiologia , Monitoramento Ambiental/métodos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Escherichia coli/isolamento & purificação , Clima Tropical , RNA Ribossômico 16S/genética , Qualidade da ÁguaRESUMO
Background: Calcium intake is below recommendations in several parts of the world. Improving calcium intake has benefits not only for bone health but also helps to prevent pregnancy hypertension disorders. Calcium concentration of tap water is usually low The aim of the present study was to determine the maximum amount of calcium that can be added to tap water while complying with drinking water Argentine regulations. Methods: Tap water samples were collected from the Province of Buenos Aires (Argentina). Physicochemical properties and saturation index were measured. Different incremental concentrations of calcium chloride were added to the experimental aliquots. Results: Baseline water had a mean calcium concentration of 22.00 ± 2.54 mg/L, water hardness of 89.9 ± 6.4 mg/L CaCO 3, and a saturation index of -1.50 ± 0.11. After the addition of 0.4554 ± 0.0071 g of salt, water hard-ness reached 355.0 ± 7.1 mg/L CaCO 3, a calcium concentration of 140.50 ± 2.12 mg/L, and a saturation index -0.53 ± 0.02. Conclusions: This study shows that at laboratory level it is feasible to increase calcium concentration of drinking water by adding calcium chloride while complying with national standards. Calcium concentration of drinking tap water could be evaluated and minimum calcium concentration of tap water regulated so as to improve calcium intake in populations with low calcium intake.
Assuntos
Cálcio , Água Potável , Água Potável/química , Água Potável/normas , Humanos , Argentina , Cálcio/análise , Estudos de Viabilidade , Cálcio da Dieta/análise , Qualidade da Água/normas , Abastecimento de Água/normas , FemininoRESUMO
Nowadays, one of the most critical challenges is reduced access to water. Climate change, industrialization, and population growth have caused many countries to suffer from water crises, especially in arid and semi-arid areas. The Culiacan River basin in Sinaloa is a region of great importance in Mexico due to its intensive agricultural activity. Hence, water quality assessment has become a necessity to ensure sustainable water use. This study describes the spatiotemporal water quality features of the Humaya, Tamazula, and Culiacan Rivers within the Culiacan River basin and their sources of contamination. Twenty-two water quality parameters were analyzed from samples taken every 6 months from 2012 to 2020 at 19 sampling sites in the basin. A multivariate statistical analysis revealed significant correlations (r > 0.85) between the water quality parameters. The modified Integrated Water Quality Index (IWQI) identified severe pollution in samples from the urban river section of the basin, while good water quality conditions were found upstream. Severe contamination was observed in 26.32% of the samples, whereas only 13.45% evidenced good water quality. The Water Quality Index (WQI) indicated that 94.74% of the samples presented fair water quality, suggesting that the surface waters of the Culiacan River Basin are suitable for agricultural irrigation. This study provides insights into the current water quality status of the surface waters in the Culiacan River Basin, identifying significant pollution sources and areas of concern. The spatiotemporal dynamics of water quality in the Culiacan River basin revealed the importance of continuous monitoring and effective water management practices to improve water quality and achieve sustainable agricultural practices.
Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Qualidade da Água , Rios/química , México , Poluentes Químicos da Água/análise , Agricultura , Poluição Química da Água/estatística & dados numéricosRESUMO
Slaughterhouses produce huge volumes of effluents throughout the production chain that, when discharged untreated into bodies of water, can become a source of environmental contamination. This is particularly worrisome if these effluents are used for irrigation since they increase contamination levels and spread pathogens and resistance determinants to humans and animals. Therefore, in this study, we assessed antimicrobial resistance in bacteria isolated from inlet water, equalization wastewater tanks, treatment plant wastewater, and treated wastewater in slaughterhouse facilities in Rio de Janeiro, Brazil. Four samples were collected at each of the collection points, between June 2021 and July 2022. Following bacterial isolation and identification, the samples were analyzed for antimicrobial resistance using the disk diffusion method to test aminoglycoside, beta-lactam, and fluoroquinolone antimicrobials. A total of 229 bacteria were isolated, with 74 isolates selected from the genera Citrobacter (12), Enterobacter (14), Klebsiella (35), Serratia (5), and Pseudomonas (8). Inlet water had the lowest number of isolates and was the only point with gentamicin-resistant isolates. Raw effluent from the equalization tank showed the highest number of isolated bacteria and resistance levels, followed by treated wastewater and the treatment plant. Across all samples, a high rate of cefoxitin-resistance was observed among the isolated bacteria. Klebsiella pneumoniae stood out as the species that demonstrated the greatest resistance to a variety of antimicrobials. These results highlight the importance of water quality monitoring in mitigating public health and environmental risks and high antimicrobial resistance levels.
RESUMO
Though surface water quality has been monitored in southern Peru over the past and current century, it has been implemented by multiple organizations. The data lacks a centralized repository and access requires logistical and temporal hurdles associated with official requests. A substantial portion of the data has not been quality assured and is in difficult-to-access formats such as scanned PDF documents. These obstacles collectively make it challenging to maximize the impact of these monitoring efforts such as efficiently evaluating long-term water quality trends. To address this opportunity, we gathered available surface water quality information from five watersheds in the Arequipa Region of southern Peru: Camaná, Chili, Ocoña, Tambo, and Yauca. The effort required entry of more than 130,000 records of water quality properties across 274 monitoring stations with data including the concentration of select nutrients, metals, organic compounds, and biological taxa. The water quality records in the Chili watershed go back as far as 1905, while data for the other watersheds was largely confined to the years 2012-2021. This document describes how the surface water quality information was assimilated with quality control and provides a centralized Excel database so that the data can be efficiently used for research and decision making purposes.
RESUMO
The Tocantins-Araguaia basin is one of South America's largest river systems, across three Brazilian states (Maranhão, Tocantins, and Pará), within the Legal Amazon region. Despite draining extensive Cerrado savanna and rainforest ecosystems, it has suffered significant degradation, notably in the past 40 years. Human activities, including agricultural expansion, deforestation, and the introduction of non-native species, have worsened the environmental damage, which is alarming since many residents and villages along the middle Tocantins River rely on it for water supply, recreation, and fishing. This study assessed the concentration of potentially toxic and essential elements in water samples from four sampling sites distributed along the middle Tocantins River. The monitoring occurred throughout 2023, involving the measurement of parameters both on-site and in the laboratory. Water quality and its health implications were evaluated using the Weighted Arithmetic Water Quality Index (WAWQI), the Water Quality Index (WQI), and the health risk assessment index. The levels of aluminum, copper, iron, magnesium, and selenium exceeded legal standards. Seasonal fluctuations indicate a complex dynamic influenced by climatic or seasonal factors, with February showing the highest values. Site P1, located in urban areas, exhibited elevated mean concentrations for conductivity, total dissolved solids (TDS), and chlorophyll, indicating the need for continuous monitoring. The nitrogen concentrations at P1 raise concerns regarding drinking water quality, which is a concern for the region's residents who use untreated river water. Despite seasonal variations in element concentrations, the overall WAWQI categorized all sections as "Excellent," and the WQI rated as "Good." Human health risk assessments detected no risks, but continuous monitoring and interventions are crucial for sustained water quality improvement.
RESUMO
Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18's water as "unsuitable for drinking" with values of 110.4 and 117.6. Enrichment factor (EF) recorded a "moderate enrichment" of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.
Assuntos
Água Potável , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Qualidade da Água , Abastecimento de Água , México , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água Potável/química , Rios/química , Metais Pesados/análise , Metais/análiseRESUMO
Streams are vulnerable to anthropogenic impacts, such as changes in land use, which reflect on water quality and can be evaluated by abiotic variables. In this context, the aims were to compare the abiotic values recorded in streams of different land use categories with the limits established by National legislation, and to analyze changes in abiotic variables in response to different land use impacts. Thus, 17 streams located in southern Brazil were sampled and grouped into urban, rural, and protected areas (PA) categories. The results showed the major impacts in urban streams. However, some variables in rural streams and PA also exceeded local legislation limits. Conductivity, total dissolved solids, salinity, ammoniacal nitrogen and coliforms were significantly higher in the urban streams. Contrary to expectations, the highest levels of manganese were found in PA streams. The relationship between abiotic variables and land uses suggests possible contamination by sewage in urban streams and by pesticides in rural streams. The abiotic similarity between rural and PA streams indicates that the conservation of these water bodies is ineffective. We suggest the monitoring of these environments and measures to mitigate the impacts to seek the restoration of ecosystem services and the well-being of human populations.
Assuntos
Monitoramento Ambiental , Rios , Rios/química , Brasil , Poluentes Químicos da Água/análise , Qualidade da Água , Conservação dos Recursos NaturaisRESUMO
Low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks and provide valuable water quality information to the public. However, the accuracy and precision of the values measured by the sensors are critical for widespread adoption. In this study, 19 different low-cost sensors, commonly found in the literature, from four different manufacturers are tested for measuring five water quality parameters: pH, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature. The low-cost sensors are evaluated for each parameter by calculating the error and precision compared to a typical multiparameter probe assumed as a reference. The comparison was performed in a controlled environment with simultaneous measurements of real water samples. The relative error ranged from - 0.33 to 33.77%, and most of them were ≤ 5%. The pH and temperature were the ones with the most accurate results. In conclusion, low-cost sensors are a complementary alternative to quickly detect changes in water quality parameters. Further studies are necessary to establish a guideline for the operation and maintenance of low-cost sensors.
Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/análise , Oxigênio/análiseRESUMO
Contamination of water bodies, associated with urbanization, agricultural, and industrial activities, is a serious environmental challenge, with particular concern about microbial pollution due to its public health implications. This study is aimed at evaluating the spatial and temporal variations in the microbiological and physicochemical quality of a floodplain lake used for recreational purposes, whose watershed has been disturbed by diverse anthropogenic activities. The results showed that, while the spatial variation of water quality principally depends on the basin characteristics, temporal variation of water quality depends on land uses, hydrological conditions, and climatic conditions. Rainfall and rising water level intensified the influence of land use on the water quality by increasing concentrations of Escherichia coli, thermotolerant coliforms, and organic matter and decreasing dissolved oxygen. Thus, the residents and tourists are potentially exposed to microbiological risks given that it exceeds the international standards suggested for recreational waters on some occasions. It would be advisable to improve routine bathing water monitoring and management to preserve the health of the inhabitants and limit the recreational use of the water body in the days following heavy rainfall as well as during the beginning of the increase in the hydrometric level.
Assuntos
Monitoramento Ambiental , Lagos , Estações do Ano , Qualidade da Água , Lagos/química , ArgentinaRESUMO
Chlorine is a common disinfectant used in water treatment. However, its reaction with organic matter can lead to the formation of harmful byproducts, such as trihalomethanes (THMs), which are potentially carcinogenic. To address this issue, the aim of this work was to enhance a colorimetric method capable of quantifying THMs in drinking water through UV/Vis Spectrophotometry, using cost-effective equipment, and validate this methodology for the first time according to established validation protocols. The method's innovation involved replacing the solvent pentane with the more common hexane, along with adjusting the heating ramp, elucidating the mechanisms involved in the process. This method involves the reaction between THMs, pyridine, and NaOH to produce a colored compound, which is then monitored through molecular absorption spectroscopy in the visible region. The method was thoroughly validated, achieving a limit of detection of 13.41 µg L-1 and a limit of quantification of 40.65 µg L-1. Recovery assays ranged from 86.1 % to 90.7 %, demonstrating high accuracy. The quality of the linear fit for the analytical curve exceeded R2 > 0.98. The method was applied to real samples, revealing concentrations ranging from 13.58 to 55.46 µg L-1, all way below the legal limit in Brazil (Maximum Contaminant Levels (MCL) = 100 µg L-1). This cost-effective and straightforward method is suitable for integration into water treatment plant laboratories.
Assuntos
Água Potável , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Trialometanos/análise , Água Potável/análise , Água Potável/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Espectrofotometria Ultravioleta/métodos , Reprodutibilidade dos Testes , Colorimetria/métodosRESUMO
The expansion of urban areas contributes to the growth of impervious surfaces, leading to increased pollution and altering the configuration, composition, and context of land covers. This study employed machine learning methods (partial least square regressor and the Shapley Additive exPlanations) to explore the intricate relationships between urban expansion, land cover changes, and water quality in a watershed with a park and lake. To address this, we first evaluated the spatio-temporal variation of some physicochemical and microbiological water quality variables, generated yearly land cover maps of the basin adopting several machine learning classifiers, and computed the most suitable landscape metrics that better represent the land cover. The main results highlighted the importance of spatial arrangement and the size of the contributing watershed on water quality. Compact urban forms appeared to mitigate the impact on pollutants. This research provides valuable insights into the intricate relationship between landscape characteristics and water quality dynamics, informing targeted watershed management strategies aimed at mitigating pollution and ensuring the health and resilience of aquatic ecosystems.
Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Qualidade da Água , Monitoramento Ambiental/métodos , Uruguai , Urbanização , EcossistemaRESUMO
Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.
Assuntos
Água Potável , Filtração , Helicobacter pylori , Microbiologia da Água , Purificação da Água , Abastecimento de Água , Filtração/métodos , Água Potável/microbiologia , Purificação da Água/métodos , Areia , ColômbiaRESUMO
We assessed microplastic (µP) pollution in water and sediment samples during the dry and rainy season (October/2018 and March/2019, respectively) from the Guarapiranga Reservoir in the Metropolitan Region of São Paulo, Brazil, which provides drinking water for up to 5.2 million people. The concentration of mPs varied spatially and seasonally, with the higher concentrations observed near the urbanized areas and during the dry season. Water column concentrations ranged from 150 to 3100 particles/m3 and 0.07-25.05 mm3 plastic/m3 water during the dry season, and 70-7900 particles/m3 and 0.06-4.57 mm3 plastic/m3 water during the rainy season. Sediment samples were collected only during the rainy season, with concentrations ranging from 210 to 22,999 particles/kg dry weight and 0.15-111.46 mm3/kg dry weight. The particle size distribution exhibited seasonal variation, with µPs >1 mm predominating during the dry season, constituting 60-75% of all particles. In terms of quantity, fibers accounted for the majority of microplastics, comprising 55-95% during the dry season and 70-92% during the rainy season. However, when considering particle volume, irregular particles dominated in some samples, accounting for up to 95% of the total amount. The predominant colors of microplastics were white/crystal, black, and blue, with the main compositions identified as polypropylene (PP) and polyethylene terephthalate (PET), suggesting the influence of untreated domestic sewage discharge. Additionally, some additives were detected, including the pigments Fast RED ITR and phthalocyanine blue. The management of reservoir water levels appears to influence the quantity of µPs in the water column. As the water level increases up to 90% of the reservoir capacity during the rainy season, the amount of µPs in the water decreases, despite the higher influx of particles resulting from surface runoff caused by rainy conditions. This suggests a "dilution" effect combined to the polymictic mixing hydrodynamics. Our results may contribute to the creation and improvement of monitoring programs regarding mP pollution and to the adoption of specific public policies, which are still lacking in legislation.