Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 954: 176562, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349197

RESUMO

Coastal salt marshes provide effective protection to the coastal environments they front against coastal erosion by reducing the incoming wave energy. Understanding sediment dynamic processes in coastal salt marshes environments is of crucial importance for coastal defense. The objective of this study is to assess the impact of Spartina alterniflora (S. alterniflora) marshes on wave attenuation, sediment transport, and morphodynamics through extensive field records on the Cixi tidal flat in Hangzhou Bay. Results demonstrate that wave attenuation by S. alterniflora marshes increases proportionally with the intensification of wind waves at a consistent water depth or significant wave height. Moreover, wave attenuation in the context of wind waves surpasses that of swells. On average, the wave attenuation provided by S. alterniflora marshes during both wind waves and swells is more than six times greater than that offered by the adjacent mudflat. Additionally, net sediment fluxes within S. alterniflora marshes decrease by 37 % in the presence of swells and 84 % with wind waves, in comparison to the mudflat. The influence of S. alterniflora marshes on tidal flat accretion is more pronounced with wind waves than swells. Notably, observed from summer to winter, the surface accretion of tidal flats is highest (∼26 cm) at the edge of S. alterniflora marshes. This study contributes valuable insights into the complex interactions between salt marshes and hydrodynamic forces, essential for informing coastal management strategies.

2.
MethodsX ; 13: 102791, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38975289

RESUMO

The goal of this research is to develop a model employing deep neural networks (DNNs) to predict the effectiveness of mangrove forests in attenuating the impact of tsunami waves. The dataset for the DNN model is obtained by simulating tsunami wave attenuation using the Boussinesq model with a staggered grid approximation. The Boussinesq model for wave attenuation is validated using laboratory experiments exhibiting a mean absolute error (MAE) ranging from 0.003 to 0.01. We employ over 40,000 data points generated from the Boussinesq numerical simulations to train the DNN. Efforts are made to optimize hyperparameters and determine the neural network architecture to attain optimal performance during the training process. The prediction results of the DNN model exhibit a coefficient of determination (R2 ) of 0.99560, an MAE of 0.00118, a root mean squared error (RMSE) of 0.00151, and a mean absolute percentage error (MAPE) of 3 %. When comparing the DNN model with three alternative machine learning models- support vector regression (SVR), multiple linear regression (MLR), and extreme gradient boosting (XGBoost)- the performance of DNN is superior to that of SVR and MLR, but it is similar to XGBoost.•High-accuracy DNN models require hyperparameter optimization and neural network architecture selection.•The error of DNN models in predicting the attenuation of tsunami waves by mangrove forests is less than 3 %.•DNN can serve as an alternate predictive model to empirical formulas or classical numerical models.

3.
J Mech Behav Biomed Mater ; 152: 106435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340479

RESUMO

Advanced composites with superior wave attenuation or vibration isolation capacity are in high demand in engineering practice. In this study, we develop the hybrid dynamic shear-lag model with Bloch's theorem to investigate the hybrid effect of reinforcement on wave attenuation in bioinspired staggered composites. We present for the first time the relationship between macroscopic wave filtering and hybridization of building blocks in staggered composites. Viscoelasticity was taken into account for both reinforcement and matrix to reflect the damping effect on wave transmission. Our findings indicate that reinforcement hybridization significantly enhances wave attenuation performance through two critical parameters: the linear stiffness and linear density of reinforcements. For purely elastic constituents, reinforcement hybridization consistently improves wave attenuation by reducing the initial frequency of the first bandgap and broadening it. For viscoelastic constituents, increasing the heterogeneity of reinforcements can benefit wave attenuation, particularly in ultralow frequency regimes, due to the strengthening of the damping effect. Our case study demonstrates that controlling the difference in linear density can result in up to a 59 % reduction in energy transmission. Our analysis suggests that hybridizing reinforcements could provide a new approach to designing and synthesizing advanced composites with exceptional wave attenuation performance.


Assuntos
Engenharia , Vibração
4.
Ann Bot ; 133(1): 1-16, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37996092

RESUMO

BACKGROUND: Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision. SCOPE: After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation). CONCLUSIONS: Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.


Assuntos
Alga Marinha , Alga Marinha/fisiologia , Ecossistema , Fotossíntese , Mudança Climática
5.
Ultrasonics ; 138: 107229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38113587

RESUMO

The second harmonic Lamb waves have high sensitivity to microstructural defects in materials and are therefore promising for incipient damage detection and monitoring of thin-walled structures. Existing studies have shown that the second harmonic Lamb waves can be cumulative with increasing propagation distance under the internal resonance conditions, which is conducive to nonlinear wave measurements in view of structural health monitoring. However, when propagating in a lossy structure with damping, the cumulative properties of the second harmonic Lamb waves are affected by energy dissipation and thus need to be re-examined. In this paper, a method for predicting the cumulative characteristics of second harmonic Lamb waves in damped plates is proposed. Instead of using material damping parameters which are difficult to obtain in practice, the proposed method relies on the attenuation patterns of Lamb waves at fundamental and double frequencies while taking into account the influence of the wave beam divergence. The proposed methodology is validated by finite element simulations and experiments. The results show that the cumulative second harmonic Lamb waves in the damped plate tend to increase and then decrease, and a "sweet" zone of relatively large amplitude can be predicted using the proposed method. The elucidation of the cumulative characteristics of the second harmonic Lamb waves provides guidance for effective system design for structural damage detection and monitoring applications.

6.
J Ultrasound Med ; 43(3): 535-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108551

RESUMO

OBJECTIVE: Improve the characterization of mechanical properties of blood clots. Parameters derived from shear wave (SW) velocity and SW amplitude spectra were determined for gel phantoms and in vitro blood clots. METHODS: Homogeneous phantoms and phantoms with gel or blood clot inclusions of different diameters and mechanical properties were analyzed. SW amplitude spectra were used to observe resonant peaks. Parameters derived from those resonant peaks were related to mimicked blood clot properties. Three regions of interest were tested to analyze where resonances occurred the most. For blood experiments, 20 samples from different pigs were analyzed over time during a 110-minute coagulation period using the Young modulus, SW frequency dispersion, and SW attenuation. RESULTS: The mechanical resonance was manifested by an increase in the number of SW spectral peaks as the inclusion diameter was reduced (P < .001). In blood clot inclusions, the Young modulus increased over time during coagulation (P < .001). Descriptive spectral parameters (frequency peak, bandwidth, and distance between resonant peaks) were linearly correlated with clot elasticity values (P < .001) with R2 = .77 for the frequency peak, .60 for the bandwidth, and .48 for the distance between peaks. The SW dispersion and SW attenuation reflecting the viscous behavior of blood clots decreased over time (P < .001), mainly in the early stage of coagulation (first minutes). CONCLUSION: The confined soft inclusion configuration favored SW mechanical resonances potentially challenging the computation of spectral-based parameters, such as the SW attenuation. The impact of resonances can be reduced by properly selecting the region of interest for data analysis.


Assuntos
Técnicas de Imagem por Elasticidade , Trombose , Animais , Suínos , Módulo de Elasticidade , Elasticidade , Viscosidade , Imagens de Fantasmas
7.
J Environ Manage ; 348: 119216, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839209

RESUMO

Invasive Spartina alterniflora has become a global management challenge in coastal wetlands. China has decided to eradicate it completely, but the high costs and its provision of beneficial ecosystem functions (EF, in the form of blue carbon and coastal protection) have raised concerns about its removal. Here, using the Yangtze Estuary as a case study, we explore a reasonable pathway of S. alterniflora management that balanced control of invasive species and EF. We simulated the spatial patterns of two key EF - blue carbon storage and wave attenuation - and identified appropriate zones for eradicating S. alterniflora based on their trade-offs. We observed contrasting patterns along the land-sea gradient for S. alterniflora community, with a decrease in blue carbon storage and an increase in wave attenuation. Notably, pioneer S. alterniflora near the foreshore displayed a high cluster of blue carbon storage (63.61 ± 7.33 Mg C ha-1) and dissipated nearly 70% of wave energy by a width of 163 m. The trade-offs between the two EF indicated that the eradication project should be implemented along the seawall rather than the foreshore. Even in the scenario of prioritized shore defense with the largest eradication zone, S. alterniflora still stored 43.1% more carbon (10.67 Gg C) compared to complete eradication and dissipated over 70% of wave energy in extreme events. Our study innovatively integrates eradication and reservation in S. alterniflora management, providing a sustainable and flexible spatial strategy that meets the needs of stakeholders.


Assuntos
Ecossistema , Áreas Alagadas , Poaceae/metabolismo , Espécies Introduzidas , China , Carbono/análise
8.
Front Hum Neurosci ; 17: 1173185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859767

RESUMO

Humanness is an important characteristic for facilitating interpersonal communication, particularly through avatars in the metaverse. In this study, we explored the mirror neuron system (MNS) as a potential neural basis for perceiving humanness in avatars. Although previous research suggests that the MNS may be influenced by human-like shape and motion, the results have been inconsistent due to the diversity and complexity of the MNS investigation. Therefore, this study aims to investigate the effects of shape and motion humanness in avatars on MNS activity. Participants viewed videos of avatars with four different shapes (HumanShape, AngularShape, AbbreviatedShape, and ScatteredShape) and two types of motion (HumanMotion and LinearMotion), and their µ-wave attenuation in the electroencephalogram was evaluated. Results from a questionnaire indicated that HumanMotion was perceived as human-like, while AbbreviatedShape and ScatteredShape were seen as non-human-like. AngularShape's humanity was indefinite. The MNS was activated as expected for avatars with human-like shapes and/or motions. However, for non-human-like motions, there were differences in activity trends depending on the avatar shape. Specifically, avatars with HumanShape and ScatteredShape in LinearMotion activated the MNS, but the MNS was indifferent to AngularShape and AbbreviatedShape. These findings suggest that when avatars make non-human-like motions, the MNS is activated not only for human-like appearance but also for the scattered and exaggerated appearance of the human body in the avatar shape. These findings could enhance inter-avatar communication by considering brain activity.

9.
Materials (Basel) ; 16(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687604

RESUMO

Based on the first-order shear deformation theory (FSDT) and Kelvin-Voigt viscoelastic model, one derives a wave equation of longitudinal guide waves in viscoelastic orthotropic cylindrical shells, which analytically solves the wave equation and explains the intrinsic meaning of the wave propagation. In the numerical examples, the velocity curves of the first few modes for the elastic cylindrical shell are first calculated, and the results of the available literature are compared to verify the derivation and programming. Furthermore, the phase velocity curves and attenuation coefficient curves of the guide waves for a functionally graded (FG) shell are calculated, and the effects of viscoelastic parameters, material gradient patterns, material volume fractions, and size ratios on the phase velocity curves and attenuation curves are studied. This study can be widely used to analytically model the wave propagating in inhomogeneous viscoelastic composite structures and present a theoretical basis for the excellent service performance of composite structures and ultrasonic devices.

10.
Polymers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299256

RESUMO

The acoustic black hole (ABH) is a feature commonly found in thin-walled structures that is characterized by a diminishing thickness and damping layer with an efficient wave energy dissipation effect, which has been extensively studied. The additive manufacture of polymer ABH structures has shown promise as a low-cost method to manufacture ABHs with complex geometries, exhibiting even more effective dissipation. However, the commonly used elastic model with viscous damping for both the damping layer and polymer ignores the viscoelastic changes that occur due to variations in frequency. To address this, we used Prony exponential series expansion to describe the viscoelastic behavior of the material, where the modulus is represented by a summation of decaying exponential functions. The parameters of the Prony model were obtained through experimental dynamic mechanical analysis and applied to finite element models to simulate wave attenuation characteristics in polymer ABH structures. The numerical results were validated by experiments, where the out-of-plane displacement response under a tone burst excitation was measured by a scanning laser doppler vibrometer system. The experimental results illustrated good consistency with the simulations, demonstrating the effectiveness of the Prony series model in predicting wave attenuation in polymer ABH structures. Finally, the effect of loading frequency on wave attenuation was studied. The findings of this study have implications for the design of ABH structures with improved wave attenuation characteristics.

11.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241869

RESUMO

The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni-Zn ferrite intercalated EG (NZF/EG) is provided in order to promote the insertion of Ni-Zn ferrite particles (NZF) into the interlayers of EG. The NZF/EG composite is in situ prepared via thermal treatment of Ni-Zn ferrite precursor intercalated graphite (NZFP/GICs) at 900 °C, where NZFP/GICs is obtained through chemical coprecipitation. The morphology and phase characterization demonstrate the successful cation intercalation and NZF generation in the interlayers of EG. Furthermore, the molecular dynamics simulation shows that the magnetic particles in the EG layers tend to disperse on the EG layers rather than aggregate into larger clusters under the synergy of van der Waals forces, repulsive force, and dragging force. The radar wave attenuation mechanism and performance of NZF/EG with different NZF ratios are analyzed and discussed in the range of 2-18 GHz. The NZF/EG with the NZF ratio at 0.5 shows the best radar wave attenuation ability due to the fact that the dielectric property of the graphite layers is well retained while the area of the heterogeneous interface is increased. Therefore, the as-prepared NZF/EG composites have potential application value in attenuating radar centimeter waves.

12.
Ultrason Sonochem ; 97: 106444, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257210

RESUMO

In this work, mixtures of increasing viscosity (from 0.9 to ≈720 mPas) are sonicated directly using an ultrasonic horn at 30 kHz to investigate the effect of viscosity on the ultrasound field both from an experimental and numerical point of view. The viscosity of the mixtures is modified by preparing water-polyethylene glycol solutions. The impact of the higher viscosity on the acoustic pressure distribution is studied qualitatively and semi-quantitatively using sonochemiluminescence. The velocity of light scattering particles added in the mixtures is also explored to quantify acoustic streaming effects using Particle Image Velocimetry (PIV). A numerical model is developed that is able to predict cavitationally active zones accounting for both thermoviscous and cavitation based attenuation. The results show that two cavitation zones exist: one directly under the horn tip and one around the part of the horn body that is immersed in the liquid. The erosion patterns on aluminum foil confirm the existence of both zones. The intensity of the cavitationally active zones decreases considerably with increasing viscosity of the solutions. A similar reduction trend is observed for the velocity of the particles contained in the jet directly under the tip of the horn. Less erratic flow patterns relate to the high viscosity mixtures tested. Finally, two numerical models were made combining different boundary conditions related to the ultrasonic horn. Only the model that includes the radial horn movements is able to qualitatively predict well the location of the cavitation zones and the decrease of the zones intensity, for the highest viscosities studied. The current findings should be taken into consideration in the design and modelling phase of horn based sonochemical reactors.

13.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109910

RESUMO

Seismic metamaterials provide an innovative alternative in earthquake engineering by reducing the hazards from seismic waves without modifying the existing structures. Although many seismic metamaterials have been proposed, a design for a broad bandgap at low frequencies is still in demand. In this study, two novel seismic metamaterials, V- and N-shaped designs, are proposed. We found that by adding a line to the letter V, turning the V-shaped design into an N-shaped design, the bandgap can be broadened. Both the V- and N-shaped designs are arranged in a gradient pattern to combine the bandgaps from metamaterials with different heights. Using only concrete as the base material for the design makes the proposed seismic metamaterial cost effective. Finite element transient analysis and band structures are in good agreement, validating the accuracy of the numerical simulations. Surface waves are effectively attenuated over a broad range of low frequencies using the gradient V- and N-shaped seismic metamaterials.

14.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050294

RESUMO

Particulate polymer composites (PPCs) are widely applied under different elastic wave loading conditions in the automobile, aviation, and armor protection industries. This study investigates the elastic wave propagation behavior of a typical PPC, specifically a Cu/poly (methyl methacrylate) (PMMA) composite, with a wide range of particle contents (30-65 vol. %) and particle sizes (1-100 µm). The results demonstrate an inflection phenomenon in both the elastic wave velocity and attenuation coefficient with increasing volume content. In addition, the inflection point moves to the direction of low content with the increase in particle size. Notably, the elastic wave velocity, attenuation, and wavefront width significantly increased with the particle size. The inflection phenomenon of elastic wave propagation behavior in PPCs is demonstrated to have resulted from particle interaction using the classical scattering theory and finite element analysis. The particle interaction initially intensified and then reduced with increasing particle content. This study elucidates the underlying mechanism governing the elastic wave propagation behavior of high particle content PPCs and provides guidelines for the design and application of wave-absorbing composites.

15.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433484

RESUMO

Flying helicopters in adverse environmental conditions, such as low heights in arid regions, can be dangerous, especially during landing and take-off, since during hovering, the rotors produce a dust cloud of particles. This phenomenon is known as the "brownout" condition. Unlike visible and infrared systems, the radar devices in the microwave or millimeter wave region offer the capability of sufficient transmission through atmospheric obscurants, such as fog, smoke, sand/dust storms, and brownout. In this work, we present a theoretical evaluation of mm-wave (85-100 GHz) attenuation/scattering and power transfer in brownout conditions. The model includes attenuation/scattering prediction and radiant flux, or power collected by the receiver. We are considering the case of sand grain clouds created by helicopter rotor airflow during landing in arid areas. The evaluated scenarios are brownout environments over ranges up to 50 m. The predicted values from the mathematical model are compared with findings in the field and the literature. A simple model for mm-wave power transfer estimation shows satisfactory agreement with the measured values.

16.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210258, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36088918

RESUMO

The retreat of Arctic sea ice is enabling increased ocean wave activity at the sea ice edge, yet the interactions between surface waves and sea ice are not fully understood. Here, we examine in situ observations of wave spectra spanning 2012-2021 in the western Arctic marginal ice zone (MIZ). Swells exceeding 30 cm are rarely observed beyond 100 km inside the MIZ. However, local wind waves are observed in patches of open water amid partial ice cover during the summer. These local waves remain fetch-limited between ice floes with heights less than 1 m. To investigate these waves at climate scales, we conduct experiments varying wave attenuation and generation in ice with a global model including coupled interactions between waves and sea ice. A weak high-frequency attenuation rate is required to simulate the local waves in observations. The choices of attenuation scheme and wind input in ice have a remarkable impact on the extent of wave activity across ice-covered oceans, particularly in the Antarctic. As well as demonstrating the need for stronger constraints on wave attenuation, our results suggest that further attention should be directed towards locally generated wind waves and their role in sea ice evolution. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

17.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210255, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36088929

RESUMO

A summary is given on the utility of laboratory experiments for gaining understanding of wave attenuation in the marginal ice zone, as a complement to field observations, theory and numerical models. It is noted that most results to date are for regular incident waves, which, combined with the highly nonlinear wave-floe interaction phenomena observed and measured during experimental tests, implies that the attenuation of regular waves cannot necessarily be used to infer the attenuation of irregular waves. Two experiments are revisited in which irregular wave tests were conducted but not previously reported, one involving a single floe and the other a large number of floes, and the transmission coefficients for the irregular and regular wave tests are compared. The transmission spectra derived from the irregular wave tests agree with the regular wave data but are overpredicted by linear models due to nonlinear dissipative processes, regardless of floe configuration. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

18.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210256, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36088931

RESUMO

Waves in the Marginal Ice Zone in the Okhotsk Sea are less studied compared to the Antarctic and Arctic. In February 2020, wave observations were conducted for the first time in the Okhotsk Sea, during the observational program by Patrol Vessel Soya. A wave buoy was deployed on the ice, and in situ wave observations were made by a ship-borne stereo imaging system and Inertial Measurement Unit. Sea ice was observed visually and by aerial photographs by drone, while satellite synthetic aperture radar provided basin-wide spatial distribution. On 12 February, a swell system propagating from east northeast was detected by both the stereo imaging system and the buoy-on-ice. The wave system attenuated from 0.34 m significant wave height to 0.25 m in about 90 km, while the wave period increased from 10 s to 15-17 s. This anomalous spectral downshifting was not reproduced by numerical hindcast and by applying conventional frequency-dependent exponential attenuation to the incoming frequency spectrum. The estimated rate of spectral downshifting, defined as a ratio of momentum and energy losses, was close to that of uni-directional wave evolution accompanied by breaking dissipation: this indicates that dissipation-driven nonlinear downshifting may be at work for waves propagating in ice. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

19.
Sci Total Environ ; 847: 157603, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901893

RESUMO

In this paper we demonstrate a novel framework for assessing nature-based solutions (NBSs) in coastal zones using a new suite of numerical models that provide a virtual "replica" of the natural environment. We design experiments that use a Digital Twin strategy to establish the wave, sea level and current attenuation due to seagrass NBSs. This Digital Twin modelling framework allows us to answer "what if" scenario questions such as: (i) are indigenous seagrass meadows able to reduce the energy of storm surges, and if so how? (ii) what are the best seagrass types and their landscaping for optimal wave and current attenuation? An important result of the study is to show that the landscaping of seagrasses is an important design choice and that seagrass does not directly attenuate the sea level but the current amplitudes. This framework reveals the link between seagrass NBS and the components of the disruptive potential of storm surges (waves and sea level) and opens up new avenues for future studies.


Assuntos
Ecossistema , Zosteraceae
20.
Sensors (Basel) ; 22(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684667

RESUMO

Unconventional oil and gas reservoirs have broad exploration and development prospects. Fracture parameters and effectiveness evaluation are two of the key tasks for the evaluation of these types of reservoirs. Array acoustic logging can be used for fracture evaluation to compensate for the deficiencies of the image logging fracture evaluation method. Therefore, to develop acoustic logging evaluation methods as well as nondestructive testing methods for fractures, experiments were conducted to study the shear wave transmission in fractured media. Experiment data demonstrate a good correlation between the shear wave attenuation coefficient and fracture width, and the shear wave attenuation coefficients rise logarithmically with the increase in the fracture width for all models with different porosities and distinct dip angles of fractures. The shear wave attenuation coefficient changes relatively faster with the fracture width when the fracture width is within 250 µm. In addition, the shear wave attenuation is affected by the core porosity and fracture dip angle. When the fracture width is constant, the shear wave attenuation caused by the 0° fracture is relatively larger and is obviously greater than that of the fractures at other angles, which is consistent with the existing experimental results. The results of this study can be used to guide further research on amplitude compensation methods for sonic signal transmission in fractured media and fracture evaluation methods.


Assuntos
Acústica , Fraturas Ósseas , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA