Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38984780

RESUMO

The objectives were to determine the interactive effect of particle size of soyabean meal (SBM) and whole wheat, barley and wheat bran (CER) on growth performance of weanling pigs after an enterotoxigenic Escherichia coli F4 challenge (Experiment 1) and on gastrointestinal (GIT) development immediately after weaning (Experiment 2). Experiment 1 consisted of 192 pigs (24 ± 3 days of age; 7.4 ± 1.1 kg weaning bodyweight [BW]) selected for Escherichia coli (E. coli) F4 susceptibility. Pigs were given an oral E. coli inoculum at postweaning day 7, to induce an enteric health challenge. Experiment 2 consisted of 40 pigs (24 ± 3 days of age; 7.2 ± 1.0 kg weaning BW) that were killed on postweaning day 8 or 9, to determine the effects of particle size on GIT development and functionality. Four experimental diets were used in a 2 × 2 factorial design: (1) coarse CER and coarse SBM, (2) coarse CER and fine SBM (CERcSBMf), (3) fine CER and coarse SBM, or (4) fine CER and fine SBM (CERfSBMf). Results showed no interaction between SBM and CER coarseness on growth performance, GIT development and functionality. Diarrhoea incidence was higher (p < 0.05) for CERfSBMf during the 2 weeks following the E. coli challenge compared to the other diets. Daily gain and feed intake during this period were higher (p < 0.05) for pigs fed CERc compared to CERf. Empty stomach weight tended to be greater by 8% (p = 0.09) for CERc compared to CERf. Gastric protein (p = 0.05) and starch (p = 0.04) disappearances were greater for SBMf compared to SBMc. Thus, CERcSBMf resulted in the best growth performance and lowest diarrhoea incidence during the 2 weeks following the E. coli challenge, which may be explained by changes in stomach functionality but not by changes in other parts of the GIT.

2.
Animals (Basel) ; 14(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38929368

RESUMO

The potentials of ABO replacer of ENZ and DFM on growth performance, AID, colonic VFAs, gut morphology, fecal score and diarrhea incidence were evaluated. We randomly assigned 120 piglets to four experimental diets that included: (1) control diet (CON), fed the basal ration; (2) ABO was added at 250 ppm of in-feed ABO; (3) ENZ was added at a rate of 3 kg/ton feed; (4) DFM was added with 50 × 106 cfu/g of Bacillus subtilis and 2 × 106 cfu/g of Lactobacillus spp. at a rate of 1.2 kg/ton feed. A complete randomized design used six pens per treatment with five pigs per pen. Pigs had ad libitum access to feed and water throughout the 6-week trial. Feed intake and BW were recorded on weeks 0, 2, 4 and 6, as well as fecal scores and diarrhea incidences (visually recorded and calculated). At weeks 2 and 4, a sub-sample of pigs (n = 6) was sacrificed for intestinal morphology, enzyme activity and VFAs. The results of the study demonstrated that DFM piglets showed increased final BW (3 kg) (p < 0.001) vs. CON. Likewise, ADG was positively affected by the incorporation of ABO, ENZ and DFM in the diets, with an average increase of 8 to 17% on ADG compared with CON (p < 0.001). The AID of gross energy, organic matter, CP and EAAs in piglets fed ENZ and DFM were significantly higher (p < 0.05) than those of CON and ABO at weeks 2 and 4. Inclusion of DFM increased intestinal morphology, enzymatic activities and propionic and butyric acid more than in pigs fed CON, ABO and ENZ (p < 0.05). The fecal score and diarrhea incidence generally decreased over time in pigs fed DFM (p < 0.05). These findings indicate that dietary supplementation with DFM has better effects at any period on growth performance, CP and AA digestibility and beneficially altered the intestinal health in weanling piglets.

3.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672361

RESUMO

Inclusion of lysophospholipids (LPL) has been proposed to increase growth performance in broilers and pigs, acting as emulsifiers through mixed micelle formation. The aim of this study was to investigate the effect of feeding LPL in weanling pig diets on growth performance and intestinal morphology. Eight hundred pigs (weight 6.96 kg ± SD 1.58 kg) were assigned to one of two dietary treatments, i.e., a basal diet (CON) or a basal diet + 0.05% lysophospholipids (LPL). The experimental period lasted for 42 days, and on days 40 and 41, 32 pigs in total were euthanized for intestinal tissue samples. From days 14 to 21, feed intake and average daily gain increased, as well as FCR, from days 28 to 42, in the LPL group compared with the CON group. In the overall period, no differences in growth performance were present between the groups. However, females displayed increased ADG from days 21 to 28 compared with castrates. The villous height tended (p = 0.051) to be lower in LPL in the proximal jejunum compared with CON. In the proximal jejunum, villus was higher (p > 0.01) in females, and in the distal jejunum, higher crypt cell proliferation (p < 0.01) and a tendency to deeper crypts (p = 0.064) were observed in female pigs as well. In conclusion, lysophospholipids did not increase growth performance in this study; however, the rate of recovery from a poorer starting point was noted, as growth rates recovered and increased faster in the LPL group. In conclusion, unlike the first phase, the LPL group recovered the growth from days 14 to 21 through higher feed intake and weight gain than the CON group. Eventually, the LPL group displayed improved FCR compared with the CON group from days 28 to 42. Further studies are needed to investigate whether this effect continues into the grower-finisher phase.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38466229

RESUMO

One-hundred-and-ninety-two weanling pigs (6.7 kg body weight) were used to evaluate the impact of a carbohydrases-protease enzyme complex (CPEC) on growth performance, nutrient digestibility, and gut microbiome. Pigs were assigned to one of the four dietary treatments for 42 d according to a 2 × 2 factorial arrangement of diet type (low fiber [LF] or high fiber [HF]) and CPEC supplementation (0 or 170 mg/kg diet). The LF diet was prepared as corn-wheat-based diet while the HF diet was wheat-barley-based and contained wheat middlings and canola meal. Each dietary treatment consisted of 12 replicate pens (six replicates per gender) and four pigs per replicate pen. Over the 42-d period, there was no interaction between diet type and CPEC supplementation on growth performance indices of pigs. Dietary addition of CPEC improved (P < 0.05) the body weight of pigs at days 28 and 42 and the gain-to-feed ratio of pigs from days 0 to 14. During the entire experimental period, dietary CPEC supplementation improved (P < 0.05) the average daily gain and gain-to-feed ratio of pigs. There were interactions between diet type and CPEC supplementation on apparent total tract digestibility (ATTD) of dry matter (DM; P < 0.01), gross energy (GE; P < 0.01), and neutral detergent fiber (NDF; P < 0.05) at d 42. Dietary CPEC addition improved (P < 0.05) ATTD of DM, GE, and NDF in the HF diets. At day 43, dietary CPEC addition resulted in improved (P < 0.05) apparent ileal digestibility (AID) of NDF and interactions (P < 0.05) between diet type and CPEC supplementation on AID of DM and crude fiber. Alpha diversity indices including phylogenetic diversity and observed amplicon sequence variants of fecal microbiome increased (P < 0.05) by the addition of CPEC to the HF diets on day 42. An interaction (P < 0.05) between diet type and CPEC addition on Bray-Curtis dissimilarity index and Unweighted UniFrac distances was observed on day 42. In conclusion, CPEC improved weanling pig performance and feed efficiency, especially in wheat-barley diets, while dietary fiber composition had a more significant impact on fecal microbial communities than CPEC administration. The results of this study underscores carbohydrase's potential to boost pig performance without major microbiome changes.


There is a pressing need to enhance livestock production efficiency to meet the growing global demand for meat. Carbohydrases and proteases are enzymes typically added to swine diets to improve nutrient utilization, leading to better growth rates and feed efficiency. This ultimately contributes to sustainable and economically viable pig farming. However, more research is required to better understand how carbohydrases and proteases interact with different diet types to optimize dietary formulations, and how this may influence gut microbiome composition. In this study, 192 weaner pigs (~7 kg) were assigned to a low-fiber diet or a high-fiber diet. Each diet type was with or without a carbohydrases and protease multi-enzyme supplementation. The results showed that adding a multi-enzyme combination to the pigs' diet significantly improved the pig's performance, regardless of diet type. Improvement in nutrient digestibility was more pronounced in pigs fed the high-fiber diet and that dietary fiber had a greater influence on the composition of fecal microbes. In essence, the study demonstrates that the multi-enzyme can boost pig growth and feed efficiency in diets with varying fiber complexity without causing significant changes in their gut microbiome.


Assuntos
Microbioma Gastrointestinal , Hordeum , Suínos , Animais , Suplementos Nutricionais , Triticum , Zea mays , Digestão , Trato Gastrointestinal , Filogenia , Dieta/veterinária , Nutrientes , Fibras na Dieta , Peso Corporal , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
5.
Biol Trace Elem Res ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253801

RESUMO

Supplementation of feed with organic zinc (Zn) has long been discussed as an alternative to inorganic Zn in pigs, but its effects on growth performance are mixed. This meta-analysis was conducted to provide a comprehensive evaluation of the influence of organic Zn on the growth performance of weanling pigs, on the basis of average daily gain (ADG), average daily feed intake (ADFI), and feed to gain ratio (F/G). We screened the PubMed and Web of Science databases (published before December 31, 2022; limited to English) systematically and contrasted organic Zn supplementation with inorganic Zn supplementation. There were 680 retrievals of studies, of which 16 (1389 pigs, 37 records) were eligible to analyze. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated using a random-effects model. The subgroup analysis was classified as organic Zn source (Zn-amino acid (Zn-AA), Zn-glycine (Zn-Gly), Zn-methionine (Zn-Met), Zn-Lysine (Zn-Lys), proteinate complex Zn (Zn-Pro), chitosan-Zn (Zn-CS) or Zn-lactate (Zn-Lac)) and Zn additive dose (low, medium, or high, i.e., lower than, equal to or higher than the requirement of NRC). Organic Zn addition in the weaning phase increased the ADG (P < 0.001) and the ADFI (P = 0.023) and decreased the F/G (P < 0.001). Specifically, for the organic sources, only Zn-CS supplementation presented significant effects on the ADG (P < 0.001), ADFI (P = 0.011), and F/G (P < 0.001). Moreover, medium-dose organic Zn supplementation had positive effects on ADG (P = 0.012), ADFI (P = 0.018), and F/G (P < 0.001). Our results indicate that organic Zn added to diets greatly improves the growth performance of weanling pigs.

6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
7.
Front Vet Sci ; 10: 1140718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383354

RESUMO

Introduction: This study was conducted to evaluate the effects of Lacticaseibacillus casei (Lactobacillus casei) and Saccharomyces cerevisiae mixture on growth performance, hematological parameters, immunological responses, and gut microbiome in weaned pigs. Methods: A total of 300 crossbred pigs [(Landrace × Yorkshire] × Duroc; 8.87 ± 0.34 kg of average initial body weight [BW]; 4 weeks of age) were divided into two dietary treatments (15 pigs/pen, 10 replicates/treatment) using a randomized complete block design (block = BW): control (CON) and the effective microorganism (MEM). The CON was not treated, while the MEM was treated with the mixture of L. casei (1 × 107 CFU/mL) and S. cerevisiae (1 × 107 CFU/mL) at 3 mL/pig/day for 4 weeks via the drinking water supply. Two feces and one blood sample from the randomly selected pigs in each pen were collected on D1 and D28 after weaning. Pigs were individually weighed, and pen feed intakes were recorded to evaluate pig growth performance. For the gut microbiome analysis, 16S rRNA gene hypervariable regions (V5 to V6) were sequenced using the Illumina MiSeq platform, and Quantitative Insight into Microbial Ecology (QIIME) and Microbiome Helper pipeline were used for 16S rRNA gene sequence analysis. Results and Discussion: The daily weight gain and feed efficiency of MEM were significantly higher than those of CON (p < 0.001). There were no significant differences in hematological parameters and immune responses between CON and MEM. However, MEM had significantly lower Treponema genus, whereas significantly higher Lactobacillus and Roseburia genera compared to CON. Overall, our data showed that L. casei and S. cerevisiae mixture could promote growth performance through the modulation of gut microbiota in pigs. This study will help to understand the correlation between the growth performance and the gut microbiome.

8.
Transl Anim Sci ; 7(1): txad022, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36911552

RESUMO

An experiment was conducted to test the hypothesis that growth performance and health status of pigs will not be reduced if hybrid rye is included in diets at the expense of corn during the initial 5 wk post-weaning. A total of 128 weanling pigs (5.6 ± 0.5 kg) were randomly allotted to 32 pens and 4 dietary treatments. Pigs were fed experimental diets for 35 d in three phases with days 1 to 7 being phase 1, days 8 to 21 being phase 2, and days 22 to 35 being phase 3. Within each phase, a control diet primarily based on corn and soybean meal was formulated, and three additional diets were formulated by including 8.0, 16.0, or 24.0% (phase 1), 16.0, 32.0, or 48.0% (phase 2), and 20.0, 40.0, or 60.3% (phase 3) hybrid rye in the diet at the expense of corn. Pig weights were recorded at the start and conclusion of each phase, fecal scores were visually assessed every other day on a pen basis, and blood samples were obtained from 1 pig per pen on days 21 and 35. Results indicated that average daily gain (ADG) in phase 1 increased (linear, P < 0.05) as the inclusion of hybrid rye increased, but no other differences in ADG were observed. Average daily feed intake linearly increased in phase 1, phase 3, and overall (P < 0.05) as hybrid rye inclusion increased in the diets, and gain:feed was negatively impacted by the inclusion of hybrid rye in the diet (phase 1, linear, P < 0.05; phases 2, 3, and overall, quadratic, P < 0.05). No differences in average fecal scores or diarrhea incidence were observed. On days 21 and 35, blood urea N increased (linear, P < 0.05) as hybrid rye increased in the diets; and on day 21, serum total protein also increased (linear, P < 0.05) with increasing hybrid rye inclusion in the diet. Mean blood hemoglobin concentration on day 35 increased and then decreased as hybrid rye inclusion increased (quadratic, P < 0.05). On day 21, interleukin (IL) 2 and IL 10 decreased and then increased (quadratic, P < 0.05) as hybrid rye inclusion increased. On day 35, IL 8 and IL 12 increased and then decreased (quadratic, P < 0.05) and interferon-gamma decreased and then increased (quadratic, P < 0.01) as hybrid rye inclusion increased. In conclusion, the ADG of pigs was not different among treatments, but at the highest hybrid rye inclusion level, pigs consumed more feed than if corn was fed and gain:feed was reduced with increasing hybrid rye in diets. Differences in blood serum cytokines indicate the immune system was affected differently when hybrid rye instead of corn was fed.

9.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373005

RESUMO

The objective of this trial was to investigate the effect of enzymatically treated yeast (ETY) on the growth performance, nutrient digestibility, immune response, and gut health of weanling pigs. A total of 192 weanling pigs (6.0 ± 1.04 kg) were allocated to 4 corn and soybean-based diets with increasing concentrations of ETY (0, 1, 2, or 4 g/kg) for a 43-d trial. There were 8 replicate pens (4 replicate pens per sex) and 6 pigs per replicate. The experiment was set up as a randomized complete block design with body weight used as a blocking factor. Pigs had ad libitum access to water and diets for the duration of the study. There was no effect of ETY supplementation on the growth performance indices of weanling pigs. At day 14, there was a quadratic decrease (P < 0.05) in the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF). At day 28, there was a linear increase (P < 0.05) in the ATTD of neutral detergent fiber and a quadratic decrease (P < 0.05) in the ATTD of ADF. On day 14, there was a linear increase (P < 0.05) in serum catalase activity with ETY supplementation. There was a linear increase (P < 0.01) in the gene expression of glutathione peroxidase-4 in the ileal mucosa of pigs. Increasing dietary ETY supplementation linearly decreased (P < 0.05) the gene expression of ileal peptide transporter 1. There was a tendency for a quadratic effect (P = 0.07) in the ileal villus height to crypt depth ratio with ETY supplementation. In addition, there was a tendency for a linear increase (P = 0.06) in ileal digesta butyrate with ETY supplementation. In conclusion, the current study demonstrated that dietary ETY supplementation could partly ameliorate the deleterious effects of post-weaning stress by enhancing the antioxidative status of weanling pigs. However, prolonged supplementation of ETY may be needed to see its effect on growth performance.


The post-weaning stage is fraught with challenges that could affect piglet lifetime growth, development, and gut health. Various factors predispose pigs to stress after weaning. These factors include the separation of piglets from the sow, temperature changes, crowding stress, exposure to new animals, and dietary and environmental antigens. With the increased search for antibiotic alternatives in weanling pigs, identifying potential health-promoting feed additives is exigent. Enzymatically treated yeast (ETY) is rich in bioactive components, including immune-stimulating glucans, mannans, and peptides. These may confer beneficial effects on pigs during the post-weaning period. In this study, ETY was supplemented in graded levels in the diet of weanling pigs. Our results showed that dietary ETY supplementation influenced gut health by promoting a better antioxidant status in weanling pigs.


Assuntos
Detergentes , Suplementos Nutricionais , Animais , Suínos , Detergentes/farmacologia , Dieta , Nutrientes , Saccharomyces cerevisiae , Imunidade , Ração Animal/análise , Digestão , Fenômenos Fisiológicos da Nutrição Animal
10.
J Anim Sci Technol ; 64(5): 854-862, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36287751

RESUMO

The purpose of this study is to determine the impact of different levels of crude protein (CP) diets supplemented with dietary protease on the growth performance and nutrient digestibility of the weanling pigs. In a 5-week study, 100 crossbred ([Landrace × Yorkshire] × Duroc) of weaner pigs that have an average initial body weight (BW) of 7.17±1.06 kg were assigned to one of four dietary treatments with 5 replications and 5 pigs (3 gilts and 2 castrated male pigs) per pen in a randomized complete block design. The dietary treatments were as follows: Phase 1: CON: basal diets (20.60% CP); low protein (LP): CON - 0.30% CP; PLP1: (CON - 0.30% CP) + 0.05% protease; PLP2: (CON - 0.50% CP) + 0.05% protease. Phase 2: CON: basal diets (18.88% CP); LP: CON - 0.30% CP; PLP1: (CON - 0.30% CP) + 0.05% protease; PLP2: (CON - 0.50% CP) + 0.05% protease. The addition of protease to low CP diets significantly increased the feed conversion ratio (FCR) (p = 0.039), BW (p = 0.046), average daily gain (ADG) (p = 0.049), and average daily feed intake (ADFI) tended to increase (p = 0.053) in the young pigs during phase 1. However, FCR tended to increase throughout the experiment but did not change during phase 2, whereas BW, ADG, and ADFI stayed unchanged throughout phase 2 and overall. There was no significant difference in dry matter, nitrogen (N), and gross energy of nutrient digestibility in all phases and overall in weaned pigs with low CP when protease was fed. In contrast, adding protease to the low CP diets increased the tendency of N digestibility (p = 0.059) during phase 1. It is concluded that dietary protease supplementation tended to increase N retention during the first phase of the weaning period, hence increasing piglet performance.

11.
Nutrients ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35276872

RESUMO

This study was to illustrate the effects of fructooligosaccharide (FOS) on the antioxidant capacity, intestinal barrier function, and microbial community of weanling pigs. Results showed that FOS reduced the incidence of diarrhea (6.5 vs. 10.8%) of pigs (p < 0.05) but did not affect growth performance when compared with the control group. A diet supplemented with FOS increased ileal mRNA expression of occludin (1.7 vs. 1.0), claudin-1 (1.9 vs. 1.0), claudin-2 (1.8 vs. 1.0), and claudin-4 (1.7 vs. 1.0), as well as colonic mRNA expression of ZO-1 (1.6 vs. 1.0), claudin-1 (1.7 vs. 1.0), occludin (1.9 vs. 1.0), and pBD-1 (1.5 vs. 1.0) when compared with the control group (p < 0.05). FOS supplementation improved the anti-oxidase activity and expression of nuclear factor erythroid-2 related factor 2 (Nrf2), and decreased concentrations of D-lactate (3.05 U/L vs. 2.83 U/L) and TNF-α (59.1 pg/mL vs. 48.0 pg/mL) in the serum when compared with the control group (p < 0.05). In addition, FOS increased Sharpea, Megasphaera, and Bacillus populations in the gut when compared with the control group (p < 0.05). Association analysis indicated that mRNA expression of occludin and claudin-1 in the ileal mucosa were correlated positively with populations of Sharpea and Bacillus (p < 0.05). Furthermore, mRNA expression of occludin and claudin-1 in the colonic mucosa were correlated positively with abundances of Sharpea, Lactobocillus, and Bifidobacterium (p < 0.05). In conclusion, FOS activated Nrf2 signaling and increased the expression of specific tight junction proteins, which were associated with reduced diarrhea incidence.


Assuntos
Oligossacarídeos , Proteínas de Junções Íntimas , Animais , Diarreia/prevenção & controle , Diarreia/veterinária , Ocludina/genética , Ocludina/metabolismo , Oligossacarídeos/farmacologia , Suínos , Proteínas de Junções Íntimas/genética
12.
J Anim Sci Technol ; 64(1): 70-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35174343

RESUMO

A set of studies was performed to determine the influence of dietary ZnO concentration and source during two phases (days 0 to 14 and days 15 to 28). Experiment 1: 168 weaned piglets were allocated to four treatment groups in six replicates. The treatments included a basal diet without ZnO supplementation (control), 2,500 mg ZnO/kg (In2500), 500 mg nano-ZnO/kg (N500), and 150 mg nano-ZnO/kg (N150). Experiment 2: 168 weaned piglets were divided into three treatment groups with eight replicates. The treatments included control, In2500, N300, and 150 mg nano-ZnO/kg (N150). An in vitro trial showed that the growth of Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium was inhibited when exposed to 300 and 500 ppm of ZnO after 24 h of incubation. In experiment 1, the average daily gain (ADG) by the pigs was improved in the N500 and IN2500 treatment groups. Colonization of coliforms and Clostridium spp. significantly decreased in the pigs fed the N500 and IN2500 diets in phase 1. The total plasma antioxidant capacity was greater in the IN2500 and N500 treatment groups than in the control. Superoxide dismutase (SOD) activity was greater in pigs fed the IN2500 (phase 1) or the IN2500 and N500 (phase 2) diets than in the control and N150 treatment group. In experiment 2, pigs in the N300 treatment group showed a higher ADG and lower fecal score colonization of coliforms and Clostridium spp. compared with those in the N150 treatment group. In conclusion, nano-ZnO at a dose of 300 ppm showed the same growth as the pharmacological dose of Zn. This provides an option to the pharmacological dose.

13.
Vet Med (Praha) ; 67(11): 562-568, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38623479

RESUMO

This study aims to analyse the effect of an Enterococcus faecium SLB 130 probiotic on the growth performance, nutrient digestibility, and blood profile in weaning pigs. A total of 200 weaning pigs were taken and assigned to 1 of 5 dietary treatments according to their average initial body weight and sex in a complete randomised block design. The experimental diets were as follows: CON - basal diet, and the basal diet supplemented with 2.5 × 105 cfu/g (TRT1), 1.29 × 106 cfu/g (TRT2), 1.15 × 107 cfu/g (TRT3), and 1.1 × 108 cfu/g (TRT4) of E. faecium for 6 weeks. Pigs fed a diet containing an E. faecium SLB 130 probiotic supplement significantly increased (P < 0.05) the body weight, average daily gain, and average daily feed intake at weeks 1, 3, 6, and the overall period. In addition, the E. faecium SLB 130 (P < 0.05) supplement group pigs showed an increased gain to feed ratio at week 6 and the overall experimental period. Moreover, the dietary inclusion of the E. faecium SLB 130 probiotic supplement linearly increased (P < 0.05) the nutrient digestibility of the dry matter and nitrogen, however, there were no improvements observed on weanling pigs' blood profile. In summary, the inclusion of an E. faecium SLB 130 probiotic additive in the weanling pigs' diet would be beneficial to enhance their growth performance and nutrient digestibility.

14.
J Anim Sci Technol ; 63(6): 1344-1354, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34957448

RESUMO

This study was conducted to evaluate the effects of brown rice (Japonica) on growth performance, nutrient digestibility, and blood parameters of weanling pigs. A total of 60 weanling pigs (28-day-old, 30 barrows and 30 gilts, 6.73 ± 0.77 kg body weight [BW]) were randomly allotted to 2 dietary treatments (6 pigs per pen; 5 replicates per treatment) in a randomized complete block design with the initial BW and sex as blocks. The dietary treatments were a typical nursery diet based on corn and soybean meal (CON) and the CON replaced 50% of corn with brown rice (BR). Pigs were fed respective dietary treatments for 5 weeks. For the last week of experiment period, pigs were fed respective dietary treatments containing 0.2% chromic oxide as an indigestible marker. Fecal samples were collected from randomly selected 1 pig in each pen daily for the last 3 d after the 4-d adjustment period. Blood was collected from randomly selected 1 pig in each pen on d 0, 3, 7, and 14 after weaning. Compared with pig fed CON diet, pigs fed the BR diet were found to have higher (p < 0.05) final BW, overall average daily gain, and apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of dry matter and energy. However, there were no significant differences between the groups with respect to average daily feed intake, gain to feed ratio, frequency of diarrhea, and the AID and ATTD of crude protein during overall experimental period. Similarly, there were no significant differences on blood parameters between the groups. Thus, the findings of this study indicate that brown rice (Japonica) can be used to replace 50% of corn in the diet of pigs during the nursery period without negatively affecting growth performance, nutrient digestibility, or blood parameters.

15.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829536

RESUMO

The objective of this study is to evaluate the effects of organic acids on piglet growth performance and health status. A total of 360 weanling pigs (5.3 ± 0.6 kg) were randomly allotted to 3 treatment groups with 12 replicates of 10 pigs/pen. Piglets were fed the same basal diet and given either water (control) or water plus 2.0 L/Ton organic acid (OA) blends, such as OA1 or OA2, respectively, for 7 weeks. Compared to the control, OA1 and OA2 improved growth performance and/or reduced the piglets' diarrhea rate during the various periods and improved small intestinal morphology at days 14 and/or 49. OA1 and OA2 also increased serum CAT and SOD activities and/or T-AOC and, as expected, decreased MDA concentration. Moreover, at day 14 and/or day 49, OA1 and OA2 increased the jejunal mRNA levels of host defense peptides (PBD1, PBD2, NPG1, and NPG3) and tight junction genes (claudin-1) and decreased that of cytokines (IL-1ß and IL-2). Additionally, the two acidifiers regulated the abundance of several cecum bacterial genera, including Blautia, Bulleidia, Coprococcus, Dorea, Eubacterium, Subdoligranulum, and YRC2. In conclusion, both of the organic acid blends improved piglet growth performance and health status, potentially by regulating intestinal redox homeostasis, immunity, and microflora.

16.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558617

RESUMO

The purpose of the current study was to assess the effects of substituting corn with ground brown rice on growth performance, immune status, and gut microbiota in weanling pigs. Seventy-two weanling pigs (28 d old with 6.78 ± 0.94 kg body weight [BW]) were randomly allotted to two dietary treatments with six pens and six pigs (three barrows and gilts) per pen within a randomized complete block design. The control pigs were fed a typical diet for weanling pigs based on corn and soybean meal diet (control diet: CON), and the other pigs were fed a formulated diet with 100% replacement of corn with ground brown rice for 35d (treatment diet: GBR). Growth performance, immune status, and gut microbiota of weanling pigs were measured. The substitution of corn with GBR did not affect growth performance or diarrhea frequency. Additionally, there were no differences in white blood cell number, hematocrit, cortisol, C-reactive protein, and serum tumor necrosis factor-alpha levels between pigs fed CON or GBR for the first 2 wk after weaning. However, weanling pigs fed GBR had lower (P < 0.05) serum transforming growth factor-beta 1 level than those fed CON. Furthermore, weanling pigs fed GBR had increased (P < 0.05) relative abundance of phylum Firmicutes and genus Lactobacillus and Streptococcus and decreased (P < 0.05) relative abundance of phylum Bacteroidetes and genus Clostridium and Prevotella in the gut microbiota compared with those fed CON. In conclusion, there was no significant difference in growth performance when corn was replaced with ground brown rice in diets for weanling pigs. Furthermore, the substitution of corn with ground brown rice in weaning diet modulated immune status and gut microbiota of pigs by increasing beneficial microbial communities and reducing harmful microbial communities. Overall, ground brown rice-based diet is a potential alternative to corn-based diet without negative effects on growth performance, immune status, and gut microbiota changes of weanling pigs.


Assuntos
Ração Animal , Oryza , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Distribuição Aleatória , Glycine max , Sus scrofa , Suínos , Desmame
17.
Biol Trace Elem Res ; 199(8): 2925-2935, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33078307

RESUMO

This study was conducted to investigate the effects of hot-melt extrusion (HME)-processed copper (Cu) sulfate supplementation on the growth performance, gut microbiota, metabolic function of Cu, and bioavailability of Cu in weanling pigs fed a corn-soybean meal basal diets. A total of 180 piglets (Yorkshire × Landrace × Duroc) of mixed-sex randomly were allotted to six treatments on the basis of initial average body weight (6.36 ± 0.39 kg) to six dietary treatments. There were six replicates in each treatment with 5 pigs per replicates. The dietary treatments included levels of CuSO4 (IN6, 6 mg Cu/kg diets; IN125, 125 mg Cu/kg diets), nano-CuSO4 (HME6, 6 mg Cu/kg diets; HME65, 65 mg Cu/kg diets; and HME125, 125 mg Cu/kg diets), and Cu-methionine (ORG125, 125 mg Cu/kg diets). The weanling pigs fed diets supplemented with the HME65 and HME125 showed a greater body weight and feed intake compared with IN6 and IN125 (P < 0.05). The weaning pigs fed diets supplemented with the HME125 showed the highest digestibility of gross energy in phase 1 and phase 2 (P < 0.05). The supplementation of HME125 significantly reduced the Escherichia coli (E.coli) in cecum and colon (P < 0.05). The supplementation of HME65 showed statistically equivalent effect on reduction of E. coli in the cecum and colon compared with IN125 and ORG125 treatments. The villus height in duodenum and jejunum of piglets in HME65 and HME125 treatments were higher than ORG125, HME6, IN6, and IN125 (P < 0.05). The gene expression of Atox1 was upregulated in IN125, HME125, and ORG125 treatments (P < 0.05). The expression of Sod1 was increased in IN125 treatment compared with IN6 treatment (P < 0.05). The HME125 treatment had the highest gene expression of ghrelin (P < 0.05). The Cu concentration of serum and liver was higher in the HME125 treatment than the HME6, IN6, and IN125 treatments (P < 0.05). The HME125 and ORG125 treatments showed a lower fecal Cu compared with IN125 treatment (P < 0.05). Taken together, these results suggest that the HME65 can be an alternative to IN125 in weanling pigs due to the greater overall average daily gain, improved villus height, and higher bioavailability.


Assuntos
Sulfato de Cobre , Cobre , Ração Animal/análise , Animais , Cobre/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Escherichia coli , Suínos , Desmame
18.
J Anim Sci Technol ; 62(3): 365-373, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32568268

RESUMO

This study was designed to evaluate the influence of dietary supplementation of Tenebrio molitor larvae (TM) as an alternative source of protein to fish meal on growth response, retention of nutrient, hematological factors, immune system, and intestinal integrity in weaned pigs. A total of 180 weanling pigs (initial bodyweight of 6.27 ± 0.15 kg; 21 d) were distributed based on the bodyweight between 3 treatments with 6 replicates in each treatment including 10 piglets per replicate. The diets corresponding to treatments consisted of a fish meal diet (CON), a fish meal-dried mealworm diet (TM1, 50% replacement of fish meal with TM meal), and a dried mealworm diet (TM2, 100% replacement of fish meal with TM meal). This study was performed in two phases as phase 1 (d 0 to 14) and phase 2 (d 15 to 28). The pigs in the TM2 treatment showed a greater gain to feed ratio compared with the TM1 pigs in phase 1. Throughout the experimental period, the average daily gain (ADG) of the TM1 pigs was significantly greater than that of the TM2 treatment. The IgG concentration was increased in the TM1 and TM2 treatments compared with the CON pigs in phase 1. In conclusion, the supplementation of TM meal (50% replacement of fish meal) did not show any adverse effects in the performance of weanling pigs, however, 100% replacement of fish meal with TM meal is not recommended.

19.
BMC Vet Res ; 16(1): 51, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046722

RESUMO

BACKGROUND: Porcine teschovirus (PTV) circulates among wild and domesticated pig populations without causing clinical disease, however neuroinvasive strains have caused high morbidity and mortality in the past. In recent years, several reports appeared with viral agents as a cause for neurologic signs in weanling and growing pigs among which PTV and new strains of PTV were described. CASE PRESENTATION: On two unrelated pig farms in the Netherlands the weanling pig population showed a staggering gate, which developed progressively to paresis or paralysis of the hind legs with a morbidity up to 5%. After necropsy we diagnosed a non-suppurative encephalomyelitis on both farms, which was most consistent with a viral infection. PTV was detected within the central nervous system by qPCR. From both farms PTV full-length genomes were sequenced, which clustered closely with PTV-3 (98%) or PTV-11 (85%). Other common swine viruses were excluded by qPCR and sequencing of the virus. CONCLUSION: Our results show that new neuroinvasive PTV strains still emerge in pigs in the Netherlands. Further research is needed to investigate the impact of PTV and other viral agents causing encephalomyelitis within wild and domestic pig populations supported by the awareness of veterinarians.


Assuntos
Encefalomielite/veterinária , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/virologia , Teschovirus/classificação , Animais , Encefalomielite/epidemiologia , Encefalomielite/virologia , Países Baixos/epidemiologia , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Suínos , Doenças dos Suínos/epidemiologia , Teschovirus/genética , Teschovirus/isolamento & purificação
20.
Front Microbiol ; 11: 608293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391231

RESUMO

Applying probiotics to improve gut health and growth performance of pigs is considered an effective approach to reduce use of antimicrobial growth promoters in swine production. Understanding the properties of these probiotics is a prerequisite for the selection of probiotic strains for pigs. Host-adapted probiotic strains were suggested to exert probiotic effects by different mechanisms when compared to free-living or nomadic probiotic strains. This study assessed the effect of probiotic intervention with Limosilactobacillus reuteri TMW1.656, a host-adapted species producing the antimicrobial compound reutericyclin, its isogenic and reutericyclin-negative L. reuteri TMW1.656ΔrtcN, and with Limosilactobacillus fermentum and Lacticaseibacillus casei, two species with a nomadic lifestyle. Probiotic strains were supplemented to the post weaning diet in piglets by fermented feed or as freeze-dried cultures. The composition of fecal microbiota was determined by high throughput sequencing of 16S rRNA gene sequence tags; Enterotoxigenic Escherichia coli and Clostridium perfringens were quantified by qPCR targeting specific virulence factors. Inclusion of host-adapted L. reuteri effectively reduced ETEC abundance in swine intestine. In contrast, nomadic L. fermentum and L. casei did not show inhibitory effects on ETEC but reduced the abundance of Clostridium spp. In addition, the increasing abundance of Bacteriodetes after weaning was correlated to a reduction of ETEC abundance. Remarkably, the early colonization of piglets with ETEC was impacted by maternal-neonatal transmission; the pattern of virulence factors changed significantly over time after weaning. Probiotic intervention or the production of reutericyclin showed limited effect on the overall composition of commensal gut microbiota. In conclusion, the present study provided evidence that the lifestyle of lactobacilli is a relevant criterion for selection of probiotic cultures while the production of antimicrobial compounds has only minor effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...