Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Front Plant Sci ; 15: 1412759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280944

RESUMO

Background: Paper mulberry is a promising alternative fodder source due to its high protein and the abundance of active components. However, paper mulberry often faces susceptibility to contamination during silage fermentation, and there is a need to improve the quality of silage fermentation of paper mulberry through exotic additives. Sea buckthorn pomace (BP) is a feed additive containing antimicrobial and antioxidant substances that help to enhance silage fermentation. Therefore, the objective of this study was to evaluate the effects of BP and Lactiplantibacillus as additives on silage fermentation and bacterial community of paper mulberry. Results: The results showed that BP and Lactiplantibacillus significantly reduced the pH and ammonium nitrogen content of paper mulberry silage (P < 0.05) and significantly increased the content of lactic acid and acetic acid (P < 0.05), resulting in more residual water-soluble carbohydrate and crude protein contents and less fiber content relative to the control. The key microorganisms in paper mulberry silage fermentation are Lactiplantibacillus pentosus and Weissella cibaria. Among these, Lactiplantibacillus favored a rapid increase in Lactiplantibacillus pentosus abundance during the pre-silage fermentation period, whereas BP favored the promotion of Lactiplantibacillus pentosus growth, resulting in higher contents of lactic and acetic acid than those of the control. Conclusions: Simultaneously adding Lactiplantibacillus and BP can effectively improve the quality of paper mulberry silage and increase the abundance of beneficial microorganisms in paper mulberry silage.

2.
Polymers (Basel) ; 16(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204534

RESUMO

An exopolysaccharide (EPS)-producing strain, identified as Weissella cibaria HDL-4, was isolated from litchi. After separation and purification, the structure and properties of HDL-4 EPS were characterized. The molecular weight of HDL-4 EPS was determined to be 1.9 × 106 Da, with glucose as its monosaccharide component. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analyses indicated that HDL-4 EPS was a D-glucan with α-(1→6) and α-(1→4) glycosidic bonds. X-ray diffraction (XRD) analysis revealed that HDL-4 EPS was amorphous. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations showed that HDL-4 EPS possesses pores, irregular protrusions, and a smooth layered structure. Additionally, HDL-4 EPS demonstrated significant thermal stability, remaining stable below 288 °C. It exhibited a strong metal ion adsorption activity, emulsification activity, antioxidant activity, and water-retaining property. Therefore, HDL-4 EPS can be extensively utilized in the food and pharmaceutical industries as an additive and prebiotic.

3.
Microorganisms ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39065109

RESUMO

The role of lipopolysaccharide (LPS) in the development of diseases is clear, but the specific mechanisms remain poorly understood. This study aimed to investigate the microbiome aberrations in the guts of mice against the background of LPS, as well as the anti-inflammatory effect of probiotic supplementation with Lactobacillus plantarum from the gut, a mix of commercial probiotic lactic acid bacteria, and Weissella confusa isolated from milk using next-generation sequencing. LPS injections were found to induce inflammatory changes in the intestinal mucosa. These morphological changes were accompanied by a shift in the microbiota. We found no significant changes in the microbiome with probiotic supplementation compared to the LPS group. However, when Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria were used, the intestinal mucosa was restored. Weissella confusa did not contribute to the morphological changes of the intestinal wall or the microbiome. Changes in the microbiome were observed with probiotic supplementation of Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria compared to the control group. In addition, when Lactobacillus plantarum was used, we observed a decrease in the enrichment of the homocysteine and cysteine interconversion pathways with an increase in the L-histidine degradation pathway.

4.
Antibiotics (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061286

RESUMO

Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.

5.
FASEB J ; 38(13): e23791, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963340

RESUMO

Inflammatory bowel disease (IBD) is a kind of recurrent inflammatory disorder of the intestinal tract. The purpose of this study was to investigate the effects of Weissella paramesenteroides NRIC1542 on colitis in mice. A colitis model was induced by adding 1.5% DSS to sterile distilled water for seven consecutive days. During this process, mice were administered different concentrations of W. paramesenteroides NRIC1542. Colitis was assessed by DAI, colon length and hematoxylin-eosin staining of colon sections. The expressions of NF-κB signaling proteins and the tight junction proteins ZO-1 and occludin were detected by western blotting, and the gut microbiota was analyzed by 16S rDNA. The results showed that W. paramesenteroides NRIC1542 significantly reduced the degree of pathological tissue damage and the levels of TNF-α and IL-1ß in colonic tissue, inhibiting the NF-κB signaling pathway and increasing the expression of SIRT1, ZO-1 and occludin. In addition, W. paramesenteroides NRIC1542 can modulate the structure of the gut microbiota, characterized by increased relative abundance of Muribaculaceae_unclassified, Paraprevotella, Prevotellaceae_UCG_001 and Roseburia, and decrease the relative abundance of Akkermansia and Alloprevotella induced by DSS. The above results suggested that W. paramesenteroides NRIC1542 can protect against DSS-induced colitis in mice through anti-inflammatory, intestinal barrier maintenance and flora modulation.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , NF-kappa B , Transdução de Sinais , Sirtuína 1 , Weissella , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Sirtuína 1/metabolismo , Camundongos , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Sulfato de Dextrana/toxicidade , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Weissella/metabolismo , Masculino , Probióticos/farmacologia
6.
Microbiol Resour Announc ; 13(8): e0027024, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38958438

RESUMO

The draft genome of a previously documented potential probiotic Weissella cibaria strain GM93m3 from raw goat milk in Nigeria is reported. The total genome size was 2,447,229 with 46 contigs and G+C content of 44.86%.

7.
Semin Dial ; 37(5): 404-407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39078724

RESUMO

We reported a rare case of peritoneal dialysis-associated peritonitis caused by Weissella confusa. In this case, the symptoms of peritonitis were insidious and atypical, with only turbid peritoneal dialysis effluent and no fever or abdominal pain. The peritoneal dialysis effluent showed slightly elevated leukocytes (predominantly lymphocytes). Weissella confusa was confirmed through repeated peritoneal dialysis effluent cultures. Gastroscopy revealed erosive gastritis with a hookworm infection. The patient recovered after antibiotic and deworming treatments. Our report highlights the unusual and atypical symptoms, characterized by insidious onset, turbid peritoneal dialysis fluid, and an absence of typical signs such as fever or abdominal pain.


Assuntos
Peritonite , Weissella , Humanos , Peritonite/microbiologia , Peritonite/tratamento farmacológico , Peritonite/diagnóstico , Peritonite/parasitologia , Peritonite/etiologia , Weissella/isolamento & purificação , Infecções por Uncinaria/diagnóstico , Infecções por Uncinaria/tratamento farmacológico , Diálise Peritoneal/efeitos adversos , Masculino , Falência Renal Crônica/terapia , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Feminino
8.
Front Microbiol ; 15: 1406904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939182

RESUMO

This review aims to comprehensively chronicle the biosynthesis, classification, properties, and applications of bacteriocins produced by Weissella genus strains, particularly emphasizing their potential benefits in food preservation, human health, and animal productivity. Lactic Acid Bacteria (LAB) are a class of microorganisms well-known for their beneficial role in food fermentation, probiotics, and human health. A notable property of LAB is that they can synthesize antimicrobial peptides known as bacteriocins that exhibit antimicrobial action against both closely related and other bacteria as well. Bacteriocins produced by Weissella spp. are known to exhibit antimicrobial activity against several pathogenic bacteria including food spoilage species, making them highly invaluable for potential application in food preservation and food safety. Importantly, they provide significant health benefits to humans, including combating infections, reducing inflammation, and modulating the gut microbiota. In addition to their applications in food fermentation and probiotics, Weissella bacteriocins show promising prospects in poultry production, processing, and improving animal productivity. Future research should explore the utilization of Weissella bacteriocins in innovative food safety measures and medical applications, emphasizing their potential to combat antibiotic-resistant pathogens, enhance gut microbiota composition and function, and synergize with existing antimicrobial therapies.

9.
Front Microbiol ; 15: 1402319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808277

RESUMO

The toxin-antitoxin (TA) system plays a key role in bacteria escaping antibiotic stress with persistence, however, the mechanisms by which persistence is controlled remain poorly understood. Weissella cibaria, a novel probiotic, can enters a persistent state upon encountering ciprofloxacin stress. Conversely, it resumes from the persistence when ciprofloxacin stress is relieved or removed. Here, it was found that PemIK TA system played a role in transitioning between these two states. And the PemIK was consisted of PemK, an endonuclease toxic to mRNA, and antitoxin PemI which neutralized its toxicity. The PemK specifically cleaved the U↓AUU in mRNA encoding enzymes involved in glycolysis, TCA cycle and respiratory chain pathways. This cleavage event subsequently disrupted the crucial cellular processes such as hydrogen transfer, electron transfer, NADH and FADH2 synthesis, ultimately leading to a decrease in ATP levels and an increase in membrane depolarization and persister frequency. Notably, Arg24 was a critical active residue for PemK, its mutation significantly reduced the mRNA cleavage activity and the adverse effects on metabolism. These insights provided a clue to comprehensively understand the mechanism by which PemIK induced the persistence of W. cibaria to escape ciprofloxacin stress, thereby highlighting another novel aspect PemIK respond for antibiotic stress.

10.
BMC Biol ; 22(1): 123, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807209

RESUMO

BACKGROUND: Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS: Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS: Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.


Assuntos
Formigas , Comportamento Alimentar , Simbiose , Animais , Formigas/fisiologia , Formigas/microbiologia , Comportamento Alimentar/fisiologia , Filogenia , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Perciformes/fisiologia , Perciformes/microbiologia
11.
J Clin Med ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731087

RESUMO

Background: WCFA19 (Weissella confusa WIKIM51), found during the fermentation of kimchi, is known for its inhibitory effects on body weight and body fat. This study looked at the impact of WCFA19 isolated from dandelion kimchi on weight loss in overweight and obese adults that are otherwise healthy. Methods: This study was conducted as a multicenter, double-blind, randomized, placebo-controlled study with 104 overweight and obese subjects. Subjects were randomized evenly into the test group (WCFA19, 500 mg, n = 40) or control group (n = 34) for 12 weeks from 14 June 2021 to 24 December 2021. Effects were based on DEXA to measure changes in body fat mass and percentage. Results: Among the 74 subjects analyzed, WCFA19 oral supplementation for 12 weeks resulted in a significant decrease in body fat mass of 633.38 ± 1396.17 g (p = 0.0066) in overweight and obese individuals in the experimental group. The control group showed an increase of 59.10 ± 1120.57 g (p = 0.7604), indicating a statistically significant difference between the two groups. There was also a statistically significant difference (p = 0.0448) in the change in body fat percentage, with a decrease of 0.41 ± 1.22% (p = 0.0424) in the experimental group and an increase of 0.17 ± 1.21% (p = 0.4078) in the control group. No significant adverse events were reported. Conclusions: Oral supplementation of 500 mg of WCFA19 for 12 weeks is associated with a decrease in body weight, particularly in body fat mass and percentage.

12.
Foods ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611436

RESUMO

The emergence of multi-drug-resistant (MDR) pathogens has considerably challenged the development of new drugs. Probiotics that inhibit MDR pathogens offer advantages over chemical antibiotics and drugs due to their increased safety and fewer side effects. This study reported that Weissella cibaria P-8 isolated from pickles showed excellent antibacterial activity against intestinal pathogens, particularly the antibacterial activity against MDR Escherichia coli B2 was the highest. This study showed that the survival rates of W. cibaria P-8 at pH 2.0 and 0.3% bile salt concentration were 72% and 71.56%, respectively, and it still had antibacterial activity under pepsin, trypsin, protease K, and catalase hydrolysis. Moreover, W. cibaria P-8 inhibits the expression of inflammatory factors interleukin-1ß, tumor necrosis factor-α, and interleukin-6, upregulates the interleukin-10 level, and increases total antioxidant capacity and superoxide dismutase enzyme activity in serum. W. cibaria P-8 also efficiently repairs intestinal damage caused by E. coli infection. The gut microbiota analysis demonstrated that W. cibaria P-8 colonizes the intestine and increases the abundance of some beneficial intestinal microorganisms, particularly Prevotella. In conclusion, W. cibaria P-8 alleviated MDR E. coli-induced intestinal inflammation by regulating inflammatory cytokine and enzyme activity and rebalancing the gut microbiota, which could provide the foundation for subsequent clinical analyses and probiotic product development.

13.
Heliyon ; 10(7): e28481, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576583

RESUMO

Probiotics have been applied to a wide range of bacteria, causing gastrointestinal and vaginal infections. However, probiotics generally possess limited antimicrobial spectra and are primarily utilized as dietary supplements. Recognizing the need for more versatile probiotics, this study focuses on isolating and characterizing strains suitable for antibiotic replacement. Among these strains, Weissella sp. SNUL2, derived from a traditional fermented food in Korea (i.e., Sikhae), emerged as a promising candidate. The correlation between optical density at 600 nm and colony-forming units was verified and applied in subsequent experiments. To assess the therapeutic potential of probiotics, antibacterial tests were conducted using a microplate reader to evaluate the inhibition of 60 bacterial strains (including common foodborne pathogens) induced by Weissella sp. SNUL2 cell-free supernatant (CFS). The results confirmed its broad-spectrum antibacterial properties compared to previously known probiotics. Furthermore, enzymatic treatment with proteinases (trypsin and pepsin) and a time-kill assay were conducted to elucidate the nature of the antibacterial substance in Weissella sp. SNUL2 CFS. Through sequential chromatography involving gel filtration and ion-exchange chromatography, specific fractions with enhanced antibacterial properties were identified. LC-MS/MS analysis of the secretome fraction revealed the presence of various proteins from the C39 family, peptidoglycan endopeptidases, and N-acetylmuramoyl-l-alanine amidase domain-containing protein precursors. Hence, the combined action of these proteins may contribute to Weissella sp. SNUL2's broad antimicrobial activity.

14.
J Funct Biomater ; 15(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535258

RESUMO

Excessive osteoclast activity can promote periodontitis-associated bone destruction. The inhibitory mechanisms of Weissella cibaria strains CMU and CMS1 against periodontitis have not yet been fully elucidated. In this study, we aimed to investigate whether heat-killed (HK) W. cibaria CMU and CMS1 or their respective cell-free supernatants (CFSs) inhibit osteoclast differentiation and bone resorption in response to receptor activator of nuclear factor kappa-B ligand (RANKL)-treated RAW 264.7 cells. TRAP (tartrate-resistant acid phosphatase) staining and bone resorption assays revealed that both HK bacteria and CFSs significantly suppressed the number of TRAP-positive cells, TRAP activity, and bone pit formation compared to the RANKL-treated control (p < 0.05). HK bacteria dose-dependently inhibited osteoclastogenesis while selectively regulating certain genes in CFSs (p < 0.05). We found that disrupting the direct interaction between HK bacteria and RAW 264.7 cells abolished the inhibitory effect of HK bacteria on the expression of osteoclastogenesis-associated proteins (c-Fos, nuclear factor of activated T cells c1 (NFATc1), and cathepsin K). These results suggest that dead bacteria suppress osteoclast differentiation more effectively than the metabolites and may serve as beneficial agents in preventing periodontitis by inhibiting osteoclast differentiation via direct interaction with cells.

15.
Int J Biol Macromol ; 264(Pt 1): 130507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428765

RESUMO

Exopolysaccharide (EPS) producing Lactic Acid Bacteria (LAB) species can be presented in distinct environments. In this study, Turkish fermented sausage (sucuk) was tested for the presence of EPS producer LAB strains and slimy-mucoid colonies were selected for further tests. Among the isolates, Weissella confusa strain S6 was identified and tested for the physicochemical characterisation of its EPS. This strain was found to produce 0.74 g L-1 of EPS in modified BHI medium conditions. Structural characterisation of EPS S6 by 1H and 13C NMR demonstrated that EPS S6 was a highly branched dextran type glucan formed by mainly (1 â†’ 2)-linked α-d-glucose units together with low levels of (1 â†’ 3)-linked α-d-glucose units as branching points. This structure was further confirmed by methylation analysis detected by GC-MS. An average molecular weight of 8 × 106 Da was detected for dextran S6. The FTIR analysis supported the dextran structure and revealed the presence of distinct functional groups within dextran S6 structure. A strong thermal profile was observed for dextran S6 detected by DSC and TGA analysis and dextran S6 revealed a degradation temperature of 289 °C. In terms of physical status, dextran S6 showed amorphous nature detected by XRD analysis. SEM analysis of dextran S6 demonstrated its rough, compact and porous morphology whereas AFM analysis of dextran S6 detected in its water solution showed the irregularity with no clear cross-link within the dextran chains. These technological features of dextran S6 suggests its potential to be used for in situ or ex situ application during meat fermentations.


Assuntos
Lactobacillales , Weissella , Dextranos/química , Weissella/metabolismo , Glucose/metabolismo , Espectroscopia de Ressonância Magnética
16.
Antioxidants (Basel) ; 13(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397763

RESUMO

Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, H. sabdariffa L. anthocyanin extracts protect LAB and support their development. This study uncovers for the first time, the antioxidant profile of Weissella confusa PP29 probiotic media and focuses on elevating its impressive antioxidant attributes by synergistically integrating H. sabdariffa L. anthocyanin extract. The multifaceted potential of this innovative approach is explored and the results are remarkable, allowing us to understand the protective capacity of the fermented product on the intestinal mucosa. The total phenolic content was much lower at the end of the fermentation process compared to the initial amount, confirming their LAB processing. The DPPH radical scavenging and FRAP of the fermented products were higher compared to ascorbic acid and antioxidant extracts, while superoxide anion radical scavenging and lipid peroxidation inhibitory activity were comparable to that of ascorbic acid. The antioxidant properties of the fermented products were correlated with the initial inoculum and anthocyanin concentrations. All these properties were preserved for 6 months, demonstrating the promising efficacy of this enriched medium, underlining its potential as a complex functional food with enhanced health benefits.

17.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253975

RESUMO

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Fazendas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Inflamação
18.
FEBS J ; 291(4): 676-689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37746829

RESUMO

The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.


Assuntos
Toxinas Botulínicas , Clostridium botulinum , Weissella , Toxinas Botulínicas/química , Neurotoxinas/metabolismo , Clostridium botulinum/química , Clostridium botulinum/metabolismo , Hemaglutininas/metabolismo , Microscopia Crioeletrônica , Domínios de Imunoglobulina
19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1030524

RESUMO

Aims@#The aim of this study was to identify an isolate B, an exopolysaccharide (EPS)-producing lactic acid bacteria and determine the fermentation time effect on EPS production. @*Methodology and results@#Isolate B, an EPS producer, was isolated from peanut milk containing commercial sugar, which was fermented spontaneously for 24 h. Isolate B was identified biochemically using API 50 CH and molecularly based on 16S rDNA. The effect of fermentation time on EPS production by isolate B with variations of the fermentation time were 12, 24, 36, 48 and 60 h. Isolate B was able to produce EPS qualitatively by producing mucoid colonies on solid media containing sucrose. The identification revealed that this isolate was Weissella confusa both biochemically using API 50 CH and molecularly based on 16S rDNA sequence homology-based method. The fermentation time significantly affected EPS production (P<0.05). Isolate B (W. confusa) produced the highest EPS (10.41 g/L) at 36 h with a cell viability of 6.5 × 108 CFU/mL. Furthermore, the FTIR results of EPS showed absorption bands characteristic of carbohydrates, including O-H, C-H, C=O, C-O-C and α-1,6 glycosidic groups. The EPS in this study was most likely a dextran type.@*Conclusion, significance and impact of study@#The yield of EPS production was influenced by fermentation time. Results suggest that W. confusa isolated from peanut milk had a good ability for EPS production. Therefore, it can be considered further to apply this strain for the production of EPS. However, further research is required.

20.
Braz J Microbiol ; 55(1): 663-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158467

RESUMO

This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.


Assuntos
Lactobacillales , Lactococcus lactis , Probióticos , Weissella , Humanos , Animais , Lactococcus lactis/genética , RNA Ribossômico 16S/genética , Células CACO-2 , Leite/microbiologia , Pepsina A , Desoxirribonucleases , Gelatinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA