Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Phytomedicine ; 135: 156085, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39353308

RESUMO

BACKGROUNDS: Cancer continues to be the leading cause of death worldwide, significantly impacting both health and the economy. Natural products have emerged as promising sources for the development of new anticancer drugs, with galangal and their active ingredient, galangin, garnering substantial interest. PURPOSE: This study summarizes recent findings on the anticancer properties of galangal and galangin, highlighting their potential to target various cancer types. METHODS: We systematically searched the literature across PubMed, Web of Science, and Google Scholar, using keywords such as "Alpinia officinarum," "Alpinia galanga", "galangal," and "galangin." This thorough approach allowed us to gather and compile a comprehensive collection of existing research on the topic. RESULTS: This article provided a thorough analysis of the distribution of galangal, the methods used to extract the active compounds of galangal, and the anticancer properties of both galangin and galangal. It is important to note that galangal and galangin primarily function by regulating the signaling pathways of PI3K/Akt, MAPK, AMPK, p53, NF-κB, and Ras/RAF/MEK/ERK, which in turn triggers apoptosis, autophagy, and ROS while preventing the migration and invasion of cancer cells. We also discussed their toxicity, bioavailability, and clinical uses. CONCLUSION: In conclusion, galangal extract and galangin have a lot of promise for treating cancer. It is anticipated that this review will further advance the use of galangal extract and galangin as potential cancer treatment medications. Moreover, the discovery and development of drugs based on galangal has enormous potential for the therapy of cancer.

2.
Sci Total Environ ; 954: 176542, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332741

RESUMO

The trend in the consumption of unconventional, more nutritious foods is leading to the globalization and decentralization of their production, giving rise to the adaptation and innovation of traditional products to make them healthier and more sustainable. This article focuses on quinoa and aims to estimate the environmental impacts of its production adapted to the Spanish conditions and of potential derived snacks enriched with this pseudo cereal by applying conventional and nutritional life cycle assessment (LCA) methodologies. Besides, an exhaustive study of the energy flows by measuring the cumulative energy demand and the calculation of the energy return of investment (EROI) is carried out to assess the most impactful aspect of the processing industries. The application of cradle to gate LCA revealed that polluting emissions of Spanish quinoa are rather similar to those of the Andean grain, with an impact on climate change of 1.03 kg CO2 eq./kg. However, high resource footprints were obtained, for instance a water deprivation potential of 60 m3/kg due to the scarcity in this country. Besides, the consideration of a nutrient profile model as functional unit led to the conclusion that quinoa-based snacks are generally more environmentally sustainable than their conventional counterparts in terms of climate change, resources consumption or water degradation. EROI scores were relatively low for all options, with only between 1.77 and 4.35 % of the energy invested returned, which evidences the unsustainable agricultural practices and low efficiency of processing units. Based on this research, producers can reorient production systems in support of nature, and consumers are able to guide their choices towards improved eating patterns.

3.
Int J Biol Macromol ; 279(Pt 4): 135579, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270900

RESUMO

To enhance the mechanical properties of polylactic acid (PLA) material, the PLA-based composite films are prepared by using Pueraria lobata (Willd.) Ohwi root microcrystalline cellulose (PRMCC) treated with 3-aminopropyl triethoxysilane (KH550) silane coupling agent as the dispersed phase through solvent casting method. The effects of the concentrations of PRMCC and KH550 as well as the KH550 pretreating condition (ethanol concentration) on the tensile properties of PLA-based composite films are investigated. The PLA-based composite film treated with 5 wt% PRMCC and 18 wt% KH550 (pretreated by 90 % EtOH) exhibits the greatest performance. Its elongation at break value is detected to be 4.0 %, 1.6 times as large as that of pure PLA film. The water absorption of the as-prepared PLA-based composite film is reduced from 0.49 % of the unmodified PLA/PRMCC film to 0.12 %. Moreover, the modified PLA-based composite film has a hydrophobic surface and exhibits good thermal stability. Compared with pure PLA film, the modified PLA-based composite film exhibits improved UV shielding performance with acceptable transparency. Furthermore, after adding poly(butylene adipate-co-terephthalate) (PBAT) to the composite system, the elongation at break of the PLA-based composite film is up to 7.2 %. This research can provide theoretical guidance for enhancing the performance of PLA products.

4.
Plants (Basel) ; 13(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339517

RESUMO

Salinity is a major problem, impeding soil productivity, agricultural sustainability, and food security, particularly in dry regions. This study integrates quinoa, a facultative halophyte, into a pomegranate-based agroforestry with saline irrigation in northeast Morocco. We aim to explore this agroforestry model's potential in mitigating salinity's effects on quinoa's agronomic and biochemical traits and evaluate the land equivalent ratio (LER). Field experiments in 2020 and 2021 used a randomized block design with three replicates, including monocropping and agroforestry systems, two salinity levels (1.12 and 10.5 dS m-1), four quinoa genotypes (Titicaca, Puno, ICBA-Q4, ICBA-Q5), and a pomegranate control. Salinity significantly decreased total dry matter (40.5%), root dry matter (50.7%), leaf dry matter (39.2%), and root-to-shoot ratio (7.7%). The impact was more severe in monoculture than in agroforestry, reducing dry matter (47.6% vs. 30.7%), grain yield (46.3% vs. 26.1%), water productivity (47.5% vs. 23.9%), and total sugar (19.2% vs. 5.6%). LER averaged 1.86 to 2.21, indicating 86-121% higher productivity in agroforestry. LER averaged 1.85 at 1.12 dS m-1 and 2.18 at 10.5 dS m-1, reaching 2.21 with pomegranate-ICBA-Q5 combination. Quinoa-pomegranate agroforestry emerges as an innovative strategy, leveraging quinoa's salt resistance and agroforestry's potential to mitigate salinity impacts while enhancing land use efficiency.

5.
Nat Prod Res ; : 1-5, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155510

RESUMO

Lumnitzera racemosa Willd is a medicinal species that supports the treatment of certain conditions. This is the first study on the chemical composition and antimicrobial activities of the essential oil from Lumnitzera racemosa Willd bark. This essential oil was extracted by the hydrodistillation method and analysed by gas chromatography (GC), and gas chromatography coupled with mass spectrometry (GC-MS). The results showed that the essential oil contains twenty-four compounds, the main of which are palmitic acid, nonacosane, and heptacosane. The antimicrobial activities of the essential oil against Pseudomonas aeruginosa, and Staphylococcus aureus had inhibition zones ranging from approximately 8.4-17.5 mm. This study has enhanced the understanding of the composition, and antimicrobial activities of L. racemosa and expanded its potential applications in the medical field.

6.
Phytochemistry ; 228: 114253, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39168425

RESUMO

Cultivation and extraction of the fungus Stereum hirsutum (Willd.) Pers. yielded 12 isopentenyl benzene derivatives, including six previously undescribed derivatives, named stereuins A-F. Their structures were established based on NMR and mass spectroscopy analyses, supplemented by comparison with previously reported data. Stereuins A-C are unique benzoate derivatives containing fatty acid subunits. Stereuins D and E feature a valylene group and a 6/6/6 ring system. In vitro, stereuin A significantly promoted neurite outgrowth. Several compounds exhibited antibacterial activity against Staphylococcus aureus. Stereuin F has an IC50 value of 5.2 µg/mL against S. aureus, comparable to the positive control, penicillin G sodium (1.4 µg/mL).


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Estrutura Molecular , Basidiomycota/química , Relação Estrutura-Atividade , Animais , Derivados de Benzeno/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Crescimento Neuronal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ratos
7.
J Ethnopharmacol ; 335: 118656, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121924

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY: Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS: GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS: Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS: Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.


Assuntos
Interleucina-6 , NF-kappa B , Scutellaria , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Scutellaria/química , Humanos , Feminino , Linhagem Celular Tumoral , Camundongos Nus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-39093467

RESUMO

Liver cancer is a malignant tumor that develops on or inside the liver. Hedyotis diffusa Willd (HDW) plays a significant role in anti-tumor activities; however, its mechanism against liver cancer remains unclear. This study aims to evaluate the immunotherapeutic mechanism of HDW in treating liver cancer through network pharmacology, bioinformatics analysis, and experimental validation. Network pharmacology was utilized to identify the active components and potential targets of HDW from the TCMSP database. A potential target protein-protein interaction (PPI) network was constructed using the STRING database, followed by function and pathway enrichment analysis of the targets using GO and KEGG methods. In addition, the key targets for HDW against liver cancer were identified using five different algorithms in Cytoscape. The TCGA and HPA databases were used to assess the mRNA and protein expression of core target genes in normal liver and liver cancer tissues and their relationship with overall survival in liver cancer, as well as their role in immune infiltration. Molecular docking between the core components of HDW and the core targets was performed using PyMOL software. The effects of HDW on the proliferation and apoptosis of liver cancer cells were examined using MTT and flow cytometry. The regulatory effects of the core component quercetin on core targets were validated using RT-qPCR and Western blot. A total of 163 potential targets were identified by searching for intersections among 7 types of active components and all potential and liver cancer targets. PPI network analysis revealed the core targets IL6 and TNF. GO enrichment analysis involved 2089 biological processes, 76 cellular components, and 196 molecular functions. KEGG enrichment analysis suggested that the anti-cancer effects of HDW might be mediated by the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, and NF-κB signaling pathway. Database validation of key targets showed that mRNA and protein expression results for the IL6 gene were contradictory, while those for the TNF gene were consistent, both being underexpressed in liver cancer. Importantly, the expression of IL6 and TNF was related to the infiltration of 24 types of immune cells, with the highest correlation with macrophages. Molecular docking showed that IL6 and TNF had high binding stability with quercetin, with binding energies of - 7.4 and - 6.0 kJ∙mol-1, respectively. Experimental validation showed that quercetin inhibited liver cancer cell proliferation and promoted apoptosis in a dose-dependent manner, with protein results indicating that quercetin downregulated the mRNA and protein expression of IL6 and TNF, and upregulated key proteins in the AGE-RAGE signaling pathway, AGEs, and RAGE. This study comprehensively elucidates the activity, potential targets, and molecular mechanisms of HDW against liver cancer, providing a promising strategy for the scientific basis and treatment mechanism of traditional Chinese medicine in treating liver cancer.

9.
Heliyon ; 10(12): e33453, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39015808

RESUMO

Saikosaponin D (SSd) is a naturally active product with strong pharmacological activity found in Bupleurum scorzonerifolium Willd. Studies have shown that endophytic fungi have great potential as sources of natural medicines. Fusarium acuminatum (CHS3), an SSd-producing endophytic fungus, was isolated from B. scorzonerifolium. To elucidate the effect of host plants on the production of SSd in CHS3, CHS3 was co-cultured with suspension cells of B. scorzonerifolium and SSd was detected using high-performance liquid chromatography (HPLC). Transcriptome sequencing (RNA-Seq) of CHS3 before and after co-culture was performed using an Illumina HiSeq 2500 platform. The results indicated that the content of SSd synthesised by CHS3 increased after co-culture with suspension cells of B. scorzonerifolium. Transcriptome analysis of CHS3 with differentially expressed genes (DEGs) showed that 1202 and 1049 genes were upregulated and downregulated, respectively, after co-culture. Thirty genes associated with SSd synthesis and 11 genes related to terpene backbone biosynthesis were annotated to the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Combined with transcriptome data, it was speculated that the mevalonate (MVA) pathway is a possible pathway for SSd synthesis in CHS3, and the expression of key enzyme genes (HMGR, HMGCS, GGPS1, MVK, FDFT1, FNTB) was validated by qRT-PCR. In conclusion, the endophytic fungus CHS3 can form an interactive relationship with its host, thereby promoting SSd biosynthesis and accumulation by upregulating the expression of key enzyme genes in the biosynthesis pathway.

10.
Front Pharmacol ; 15: 1412816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978983

RESUMO

Background: Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods: High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results: Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion: Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.

11.
Ann Med Surg (Lond) ; 86(6): 3337-3348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846818

RESUMO

Objective: This study aims to elucidate anti-liver cancer components and potential mechanisms of Curcumae Rhizoma and Hedyotis diffusa Willd (CR-HDW). Methods: Effective components and targets of CR-HDW were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Liver cancer-related genes were collected from GeneCards, Gene-Disease Association (DisGeNET), and National Center for Biotechnology Information (NCBI). Protein-protein interaction networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified genes. Molecular docking was used to simulate binding of the active components and their target proteins. Cell activity assay, western blot, and senescence-associated ß-galactosidase (SA-ß-gal) experiments were conducted to validate core targets identified from molecular docking. Results: Ten active compounds of CR-HDW were identified including quercetin, 3-epioleanic acid and hederagenin. The primary core proteins comprised Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Protein Kinase B(AKT1), etc. The pathways for Phosphoinositide 3-kinase (PI3K)/ AKT, cellular senescence, Fork head boxO (FOXO) were revealed as important for anti-cancer activity of CR-HDW. Molecular docking demonstrated strong binding between liver cancer target proteins and major active components of CR-HDW. In-vitro experiments confirmed that hederagenin and 3-epioleolic acid inhibited HuH-7 cell growth, reduced expression of PI3K, AKT, and mechanistic target of rapamycin (mTOR) proteins. Hederagenin also induced HuH-7 senescence. Conclusions: In summary, The authors' results suggest that the CR-HDW component (Hederagenin, 3-epoxy-olanolic acid) can inhibit the proliferation of HuH-7 cells by decreasing PI3K, AKT, and mTOR. Hederagenin also induced HuH-7 senescence.

12.
Nat Prod Res ; : 1-5, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885333

RESUMO

This study aims to elucidate the mechanisms by which the effective components of Scleromitrion diffusum (Willd.) (SDW) treat lung cancer, using network pharmacology, in vitro cell experiments, and molecular docking methods. Network pharmacology techniques were employed to construct a network of SDW components, lung cancer targets, and signaling pathways. A proteinprotein interaction (P P I) network was built for target genes, identifying core gene targets. Signaling pathway and biological process analyses were conducted. MT T assays measured cell viability, and Western blot analysis assessed the impact of core protein targets and key pathway proteins on the stemness of three lung cancer cell lines. Molecular docking was performed to link SDW components with core proteins and key pathway targets related to lung cancer. SDW was found to target 88 genes and 5 active components (2-methoxy-3-methyl-9-10-anthraquinone, stigmasterol, beta-sitosterol, quercetin, and poriferasterol) relevant to lung cancer treatment. The P I3K/Akt and MEK/ERK pathways were identified as major signaling pathways. Extracts from SDW roots significantly inhibited the proliferation of three lung cancer cell lines (A549, HCC827, and NCIH-1395), primarily via P I3K/Akt and MEK/ERK pathways, significantly reducing the expression of p-Akt and p-Erk1/2 and slightly inhibiting caspase-9, p-P I3K, and EGFR expression. Molecular docking confirmed the strong binding activities of SDW components with lung cancer-related core proteins and key pathway targets. SDW may regulate apoptosis and proliferation in lung cancer treatment through P I3K-Akt and MAP K/ERK signaling pathways. The combination of network pharmacology, molecular docking, and experimental validation provides valuable insights into the molecular mechanisms of SDW in lung cancer therapy.

13.
J Ethnopharmacol ; 333: 118418, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38838926

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bronchitis is a respiratory disease characterized by a productive cough. Polygala tenuifolia Willd., commonly known as Yuan zhi, is a traditional Chinese herbal medicine used for relieving cough and removing phlegm. Despite its historical use, studies are lacking on the effectiveness of P. tenuifolia in treating bronchitis. Furthermore, the molecular mechanisms underlying the action of its bioactive compounds remain unknown. AIM OF THE STUDY: This study aims to identify the main bioactive compounds responsible for the effects of P. tenuifolia liquid extract (PLE) in treating bronchitis and to elucidate the associated molecular mechanisms. MATERIALS AND METHODS: The main chemical compounds in PLE were identified and determined using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The antitussive, expectorant and anti-inflammatory activities of PLE were evaluated in an ammonia-induced mouse cough model, a tracheal phenol red excretion mouse model, and a xylene-induced ear swelling mouse model, respectively. A network pharmacology analysis was conducted to investigate the associated gene targets, gene ontology, and KEGG pathways related to the main bioactives in PLE targeting bronchitis. PLE and its five bioactive compounds were assessed for their potential anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Western blot analysis was conducted to elucidate the associated molecular mechanisms. RESULTS: Thirty-seven compounds in PLE were identified, and twelve main compounds were further quantified in PLE using UPLC-MS/MS. PLE oral gavage administrations (0.6 and 0.12 mg/kg) for 7 days markedly reduced cough frequency, prolonged latency period of cough, reduced phlegm and inflammation in mice. The network pharmacology analysis identified 57 gene targets of PLE against bronchitis. The PI3K/AKT and MAPK signalling pathways were the top two modulated pathways. In RAW264.7 cells, PLE (12.5-50 µg/mL) significantly reduced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α. PLE downregulated LPS-elevated protein targets in both PI3K/AKT and MAPK signaling pathways. In PLE, tenuifolin, polygalaxanthone ⅠⅠⅠ, polygalasaponin ⅩⅩⅤⅢ, tenuifoliside B, and 3,6'-Disinapoyl sucrose, were identified as the top five core components responsible for treating bronchitis. These compounds were also found to modulate the protein targets in the PI3K/AKT and MAPK signalling pathways. CONCLUSIONS: This study demonstrated the potential therapeutic effects of PLE on bronchitis by reducing cough, phlegm and inflammation. The anti-inflammatory action and molecular mechanisms of the 5 main bioactive compounds in PLE were partly validated through the in vitro assays. The findings provide valuable insights into the mechanisms underlying the traditional use of PLE for bronchitis.


Assuntos
Anti-Inflamatórios , Bronquite , Tosse , Farmacologia em Rede , Extratos Vegetais , Raízes de Plantas , Polygala , Espectrometria de Massas em Tandem , Animais , Polygala/química , Espectrometria de Massas em Tandem/métodos , Camundongos , Tosse/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Raízes de Plantas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bronquite/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antitussígenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Modelos Animais de Doenças , Xilenos , Amônia , Espectrometria de Massa com Cromatografia Líquida
14.
J Microencapsul ; 41(5): 327-344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829223

RESUMO

AIM: The work reports a novel nanophytosomal gel encapsulating Alpinia galanga (L.) Willd leaf essential oil to treat periodontal infections. METHODS: Alpinia oil-loaded nanophytosomes (ANPs) were formulated by lipid layer hydration technique and were evaluated by FESEM, cryo-TEM, loading efficiency, zeta potential, particle size, release profile etc. Selected ANPs-loaded gel (ANPsG) was evaluated by both in vitro and in vivo methods. RESULTS: Selected ANPs were spherical, unilamellar, 49.32 ± 2.1 nm size, 0.45 PDI, -46.7 ± 0.8 mV zeta potential, 9.8 ± 0.5% (w/w) loading, 86.4 ± 3.02% (w/w) loading efficiency with sustained release profile. ANPsG showed good spreadability (6.8 ± 0.3 gm.cm/sec), extrudability (79.33 ± 1.5%), viscosity (36522 ± 0.82 cps), mucoadhesive strength (44.56 ± 3.5 gf) with sustained ex vivo release tendency. Satisfied ZOI and MIC was observed for ANPsG against periodontal bacteria vs. standard/control. ANPsG efficiently treated infection in ligature induced periodontitis model. Key pharmacokinetic parameters like AUC, MRT, Vd were enhanced for ANPsG. CONCLUSION: ANPsG may be investigated for futuristic clinical studies.


Assuntos
Alpinia , Géis , Óleos Voláteis , Folhas de Planta , Óleos Voláteis/química , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacocinética , Óleos Voláteis/farmacologia , Alpinia/química , Animais , Géis/química , Folhas de Planta/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Doenças Periodontais/tratamento farmacológico , Masculino , Nanopartículas/química , Ratos , Periodontite/tratamento farmacológico , Simulação por Computador
15.
Life (Basel) ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929728

RESUMO

Crop rotation has been considered a potential solution to mitigate the negative effects of the continuous cropping of sorghum, including soil quality issues, inadequate plant development, and diminished yield and quality. A two-year field experiment was conducted to compare the effects of sorghum-sorghum continuous cropping and quinoa-sorghum rotation on soil properties and sorghum yield. The treatments were arranged in a randomized complete block design with three replicates. Sorghum seeds (Jinza 22) and quinoa seeds ('Jiaqi 1' variety) were used. Soil samples were collected before and during the experiment for the analysis of physicochemical properties. The yield traits of sorghum were measured at maturity. The results showed that soil nutrients and organic matter were higher in the top 0-20 cm soil depth compared to 20-40 cm depth, with significant differences observed between cropping systems. Sorghum-quinoa cropping increased soil total N and organic matter, particularly at the jointing and maturity stages of sorghum. However, the available phosphorus was higher under continuous cropping at all growth stages. Crop rotation significantly improved sorghum yield traits, including spike fresh weight, spike dry weight, grain weight per spike, and grain yield per hectare. A correlation analysis revealed positive relationships between soil total N, organic matter, and sorghum yield. Overall, sorghum-quinoa rotation demonstrated potential for improving soil fertility and enhancing crop productivity compared to continuous cropping, although further studies are needed to explore the long-term effects and optimize management practices.

16.
Environ Toxicol ; 39(8): 4221-4230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38738704

RESUMO

Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common and serious disease with unclear pathogenesis and recurrent symptoms. Hedyotis diffusa Willd (HDW) has been recognized for its potential in managing various chronic inflammatory diseases. This research aimed to interrogate the mechanism of HDW in treating CP/CPPS. Complete Freund Adjuvant (CFA) and LPS were utilized to establish the rat and cell models of CP/CPPS. Results showed that HDW decreased levels of inflammation-related factors in CP rat prostate tissue and LPS-elicited RWPE-1 cell injury model. Moreover, HDW administration impaired oxidative stress in the prostate and RWPE-1 cells. In addition, HDW treatment activated the NRF2/ARE signaling in rat prostate tissue and cell models. Interestingly, NRF2/ARE pathway inhibitor ML385 reversed the inhibition effects of cell apoptosis, inflammation, and oxidative stress triggered by HDW. In summary, HDW alleviated inflammation and oxidative stress by activating NRF2/ARE signaling in CP/CPPS rat model and human prostate epithelial cell injury model.


Assuntos
Hedyotis , Inflamação , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Prostatite , Transdução de Sinais , Masculino , Prostatite/induzido quimicamente , Prostatite/patologia , Prostatite/metabolismo , Prostatite/tratamento farmacológico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Hedyotis/química , Ratos , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Próstata/patologia , Próstata/metabolismo , Linhagem Celular , Elementos de Resposta Antioxidante/efeitos dos fármacos , Doença Crônica
17.
Plants (Basel) ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794401

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a facultative halophyte renowned for its importance in enhancing food security, and it supports forage production across diverse climatic regions. The objective of this study is to examine the impacts of multiple pre-treatment methods on C. quinoa seed (Titicaca cultivar) germination parameters, identify the optimum pre-treatment to diminish the consequence of salinity, and promote the productivity of this crop, especially in marginal environments. For this purpose, a spectrum of sodium chloride (NaCl) concentrations spanning from 0 to 500 mM and gibberellic acid (GA3) concentrations ranging from 0 to 300 ppm were tested, and mechanical scarification (MS) was carried out. The effect of a combination of these pretreatment NaCl/GA3 and NaCl/MS on the germination parameters of C. quinoa seed was also investigated. The results showed that the total germination, vigor index, and germination index decreased progressively with an increase in salinity. Hence, salinity exhibited a notable influence on most germination parameters. Moreover, seeds scarified with 500 mM of NaCl negatively affected all measured parameters. In contrast, gibberellic acid applied at 200 ppm was effective on most of the parameters measured, particularly under 100 mM of NaCl. These findings indicate that immersing seeds in gibberellic acid could mitigate the adverse impacts of salinity.

18.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731410

RESUMO

Cirsium japonicum Fisch. ex DC. (CF) and Cirsium setosum (Willd.) MB (CS) are commonly used clinically to stop bleeding and eliminate carbuncles. Still, CF is mainly used for treating inflammation, while CS favors hemostasis. Therefore, the present study used UHPLC-MS to analyze the main chemical constituents in CF-CS extract. We optimized the extraction process using single-factor experiments and response surface methodology. Afterward, the hemostatic and anti-inflammatory effects of CF-CS extract were investigated by determining the clotting time in vitro, the bleeding time of rabbit trauma, and the induction of rabbit inflammation using xylene and lipopolysaccharide. The study of hemostatic and anti-inflammatory effects showed that the CF-CS, CF, and CS extract groups could significantly shorten the coagulation time and bleeding time of rabbits compared with the blank group (p < 0.01); compared with the model group, it could dramatically inhibit xylene-induced ear swelling in rabbits and the content of TNF-α, IL-6, and IL-1ß in the serum of rabbits (p < 0.01). The results showed that combined CF and CS synergistically increased efficacy. CF-CS solved the problem of the single hemostatic and anti-inflammatory efficacy of a single drug, which provided a new idea for the research and development of natural hemostatic and anti-inflammatory medicines.


Assuntos
Anti-Inflamatórios , Cirsium , Hemostáticos , Extratos Vegetais , Animais , Coelhos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cirsium/química , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino
19.
Artigo em Inglês | MEDLINE | ID: mdl-38809293

RESUMO

Ovarian cancer (OC) is a common malignancies of the female genitalia. P. montana var. lobata (Willd.), a herb with anti-tumor effects, is widely used in the clinical treatment of ovarian cancer (OC), but the ingredients and molecular mechanism of action remains to be explored. In this study, we extracted the main active ingredients of P. montana var. lobata (Willd.) from the TCMSP database, and predicted its potential targets of action against OC from the DisGeNET and GeneCards databases. Protein-protein interaction (PPI) was constructed using the STRING database, while pathway enrichment analyses were performed using the DAVID database. Next, we generated an Ingredient-Target-Pathway network using Cytoscape 3.7.2, then processed the key targets of action and main active ingredients for molecular docking. The results showed that seven active ingredients of P montana var. lobata (Willd.) were associated with treating for OC, namely beta-sitosterol, coumestrol, daidzein, formononetin, genistein, puerarin and scoparone, two important targets Casp3 and Jun, and signaling pathways of P. montana var. lobata (Willd.) against the progression of OC. TUNEL staining, enzyme-linked immunosorbent assay (ELISA), and Western blot assays, the pharmacodynamic effect of puerarin in the treatment of OC and the major targets were verified. Animal experiment demonstrated that application of puerarin at different times of modeling not only upregulated expression of Casp3, Smac, and c-jun proteins, but also promoted apoptosis in tumor cells, hence inhibiting progression of OC. This study demonstrates that P. montana var. lobata (Willd.) can thereby induce apoptosis in tumor cells and inhibit malignant progression through activating expression of Casp3, smac, and c-jun proteins to regulate related apoptosis pathways, as validated by network pharmacology predictions and animal experiments, and can be verifed by large-scale clinical trials in the future. This study also provides theoretical support and new research perspectives for this disease.

20.
Front Pharmacol ; 15: 1385213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783952

RESUMO

Background: Snakebite is a neglected tropical disease that affects millions of people worldwide. Developing effective treatments can make a significant contribution to global health efforts and public health initiatives. To reduce mortality due to snakebite, there is an immediate need to explore novel and effective treatment methodologies. In that context, nanoparticle-based drug delivery is gaining a lot of attention. Hydrophilic nanoparticles are suitable for the delivery of therapeutic peptides, proteins, and antigens. Methods: The present investigation is aimed at evaluating the anti-ophidian potential of the methanolic extract of the ethno-medicinal herb Leucas aspera (Willd.) loaded within chitosan nanoparticles (CNP-LA), against the Indian cobra (Naja naja) venom enzymes. For this purpose, nanoparticles were prepared using the ionic gelation method to enhance the efficacy of the extract. The physicochemical and structural features of nanoparticles were investigated using dynamic light scattering (DLS), Fourier-transform Infrared (FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) techniques. Results: It was found that CNP-LA has an average size of 260 nm with a polydispersity index of 0.132 (PDI) and zeta potential of 34.7 mV, with an encapsulation efficiency of 92.46%. The in vitro release study was performed at pH 5.0 and 7.4. Furthermore, in vitro studies indicated that CNP-LA inhibited the phospholipase A2, hemolytic, and caseinolytic activities of Naja naja venom with the percentage inhibition of 92.5%, 83.9%, and 94.5%, respectively. Conclusion: This is the first report on the application of herbal methanolic extract loaded within chitosan nanoparticles for neutralizing snake venom enzymes with increased efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA