RESUMO
RESUMO Em meio a pautas sustentáveis, as fontes de energia renováveis apresentam um forte papel, em especial, a energia eólica. No entanto, a implantação dos empreendimentos eólicos produz transformações nas comunidades, causando impactos em diferentes áreas e processos de vulnerabilização. O estudo objetiva problematizar os relatos da população camponesa referentes aos processos de vulnerabilização em área de influência da implantação dos empreendimentos eólicos em um município pernambucano. Trata-se de uma pesquisa observacional, descritiva de abordagem qualitativa, realizada em uma comunidade camponesa localizada no município de Caetés, Pernambuco, Brasil. A coleta de dados foi realizada mediante entrevista semiestruturada. A análise de dados partiu da técnica de análise de conteúdo na modalidade temática. Observou-se que a chegada e o funcionamento dos aerogeradores coincidiram com o surgimento de sinais e sintomas, como os problemas auditivos e de pele, ansiedade, tontura e cefaleia. Tal situação permite considerar uma provável ligação entre os impactos causados pelas torres eólicas, já descritos na literatura, com aqueles presentes nos relatos dos participantes. É necessário prudência no momento de planejamento e construção de complexos eólicos, uma vez que tais agravos à saúde podem se comportar como temporários ou permanentes, levando a comunidade local a um sofrimento constante.
ABSTRACT Amid sustainable agendas, renewable energy sources play a strong role, especially wind energy. However, the implementation of wind farms produces transformations in communities, causing impacts in different areas and vulnerability processes. The study aims to problematize the reports of the peasant population regarding the processes of vulnerability in the area of influence of the implementation of wind farms in a municipality in Pernambuco. This is an observational, descriptive research with a qualitative approach, carried out in a peasant community, located in the municipality of Caetés, Pernambuco, Brazil. Data collection was carried out through semi-structured interviews. Data analysis was based on the content analysis technique in the thematic modality. It was observed that the arrival and operation of the wind turbines coincided with the emergence of signs and symptoms, such as hearing and skin problems, anxiety, dizziness and headache. This situation allows us to consider a probable connection between the impacts caused by wind towers, already described in the literature, and those present in the participants' reports. Prudence is necessary when planning and building wind farms, since such health problems can be temporary or permanent, leading the local community to constant suffering.
RESUMO
Background: Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods: We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results: In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion: We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.
Assuntos
Quirópteros , Energia Renovável , Feminino , Masculino , Animais , Razão de Masculinidade , Texas/epidemiologia , Estações do AnoRESUMO
Oceanic energy, such as offshore wind energy and various marine energy sources, holds significant potential for generating green hydrogen through water electrolysis. Offshore-generated hydrogen has the potential to be transported through standard pipelines and stored in diverse forms. This aids in mitigating the variability of renewable energy sources in power generation and, consequently, holds the capacity to reshape the framework of electrical systems. This research provides a comprehensive review of the existing state of investigation and technological advancement in the domain of offshore wind energy and other marine energy sources for generating green hydrogen. The primary focus is on technical, economic, and environmental issues. The technology's optimal features have been pinpointed to achieve the utmost capacity for hydrogen production, providing insights for potential enhancements that can propel research and development efforts forward. The objective of this study is to furnish valuable information to energy companies by presenting multiple avenues for technological progress. Concurrently, it strives to expand its technical and economic outlook within the clean fuel energy sector. This analysis delivers insights into the best operating conditions for an offshore wind farm, the most suitable electrolyzer for marine environments and the most economical storage medium. The green hydrogen production process from marine systems has been found to be feasible and to possess a reduced ecological footprint compared to grey hydrogen production.
RESUMO
Wind energy is an important electricity source. Even though it is cleaner than other energy sources in terms of greenhouse gas emissions, gathering energy from the wind has impact on organisms that fly, including bats. Understanding whether and how bat activity patterns are affected by environmental variables may be useful when trying to mitigate these impacts, for example bat mortality from collisions with wind turbines. Northeastern Brazil concentrates one of the world's largest wind potentials and has thousands of wind turbines in operation. In spite of this scenario, there is a lack of basic information, such as the presence of bat species and their activity patterns in those wind farms. We used passive acoustic monitoring to assess species richness and species composition and obtain data on activity patterns of insectivorous bats in four wind farm complexes in northeastern Brazil. We also investigated the possible correlation between environmental variables (wind speed and direction, air temperature and humidity, and percentage of moon illumination) and bat activity. The acoustic monitoring carried out for 30 nights produced approximately 120,000 bat passes of 29 sonotypes and four families. Environmental variables may influence bat activity, but in a site-specific way, i.e., although the environmental conditions of wind-energy complexes were similar, there was not an activity pattern common to all. Considering such specificities, we strongly recommend long-term specific on-site monitoring in each wind complex, avoiding generalizations for the environmental licensing of wind energy in Brazil.(AU)
Assuntos
Animais , Quirópteros , Meio Ambiente , Energia Eólica , Brasil , Singularidades , Licenciamento AmbientalRESUMO
Tourism activity in Peru has been experiencing significant growth in the last ten years, positioning this economic sector as the third largest contributor to the National Gross Domestic Product (GDP). Likewise, Peru has a high ecological and climate diversity, which makes it the possessor of renewable energy potential, specifically solar and wind power. The rapid growth of tourism is leading to generating prospects for becoming a sustainable destination. In this sense, it is important to understand and evaluate the Peruvian legislative framework for sustainable tourism and the current state of the implementation of the scenarios provided by the governmental entity in terms of sustainability, and its link with tourism activity. Based on what has been described, this study is aimed at evaluating the four most relevant museums in the northern part of Peru; in addition, it contributes to the studies that exist at the intersection of tourism and sustainability in the chains of activities related to tourism and calls for rationality applied to tourism management in this region of Latin America. The results of the literature review of the Peruvian legal framework reveal a lack of specific laws and regulations on sustainable tourism; on the contrary, there are policies in force that contribute to promoting the development of sustainable tourism. The quantified evaluation of the solar and wind potentials of the geographical area under study indicates the minimum renewable energy potential necessary for its transformation and use in the development of sustainable museums and its contribution to sustainable tourism.
RESUMO
Resumen Introducción: la energía eólica ha crecido de forma acelerada en los últimos 20 años y los sitios para instalar parques eólicos se empiezan a agotar. Las turbinas eólicas de pequeña escala representan una alternativa viable, en particular en zonas boscosas: de bajo potencial eólico y alta turbulencia. Objetivo: presentar una revisión de los perfiles aerodinámicos para aerogeneradores de pequeña escala, para determinar su posible aplicación en zonas boscosas. Materiales y métodos: se efectúa una revisión literaria en las bases de datos Web of Science y Scopus, sobre turbinas eólicas de pequeña escala de eje horizontal, en las revistas Energy, Journal of Wind Engineering and Industrial Aerodynamics, Renewable and Sustainable Energy Reviews y Renewable Energy, entre otras. Se define una clasificación de tres grandes grupos para los perfiles aerodinámicos: de uso muy frecuente, de uso con frecuencia media y de uso con baja frecuencia. Resultados: los perfiles de uso muy frecuente son el SG6043, S809 y NACA0012, siendo el primero de ellos el que presenta mejor desempeño aerodinámico. A pesar de esto, otros perfiles como el SH3055 son ampliamente usados en turbinas eólicas de pequeña escala. Conclusiones: un perfil adecuado para una turbina eólica de pequeña escala para zonas boscosas debe ser diseñado para regulación por pérdida (stall) y poseer una alta robustez ante cambios de rugosidad superficial. El perfil con mayor potencial, según la literatura para esta aplicación, es el SG6043, siendo 110 % y 85 % más eficiente que NACA0012 y S809, respectivamente, para un Re de 2 x 105; empero, se requiere más investigación en temas como desempeño aerodinámico de los perfiles ante altos niveles de turbulencia.
Abstract Introduction: Wind energy has grown rapidly in the last 20 years and sites to install full-scale wind farms are starting to run out. Small-scale wind turbines represent a feasible alternative, particularly in forested areas of low wind potential and high turbulence. Objective: to present a review of the aerodynamic profiles for small-scale wind turbines, to determine their possible application in wooded areas. Materials and methods: a review of small-scale horizontal axis wind turbines is carried out using the Web of Science and Scopus databases mainly on the journals: Energy, Wind Engineering and Industrial Aerodynamics, Renewable and Sustainable Energy Reviews, and Renewable Energy. A classification of three large groups is defined for the aerodynamic profiles: very frequent use, medium frequency use and low frequency use. Results: the profiles of very frequent use are the SG6043, S809 and NACA0012, the first of them is the one having the best aerodynamic performance. Despite this, other profiles such as the SH3055 are widely used in the small-scale wind turbine field. Conclusions: a suitable profile for a small-scale wind turbine for forested areas should be designed for stall regulation and have low sensitivity against changes in surface roughness. The profile with the greatest potential, according to the literature for this application, is the SG6043, being 110 % y 85 % more efficient than NACA0012 and S809, respectively, for a Re of 2 x 105; however, more research is required on issues such as aerodynamic performance of the profiles at high levels of turbulence.
Resumo Introdução: a energia eólica há crescido de forma acelerada nos últimos 20 anos e os sítios para instalar parques eólicos empeçam a diminuir. As turbinas eólicas de pequena escala representam uma alternativa viável, em particular nas zonas arborizadas: de baixo potencial eólico e alta turbulência. Objetivo: apresentar uma revisão dos perfis aerodinâmicos para aerogeradores de pequena escala, para determinar uma possível aplicação nas zonas arborizadas. Materiais e métodos: efetuou-se uma revisão literária nas bases de dados Web of Science e Scopus, sobre turbinas eólicas de pequena escala de eixo horizontal, nos jornais Energy, Journal of Wind Engineering and Industrial Aerodynamics, Renewable and Sustainable Energy Reviews e Renewable Energy, entre outras. Define-se uma classificação dos três grandes grupos para os perfis aerodinâmicos: de uso muito frequente, de uso com frequência meia e de uso com baixa frequência. Resultados: os perfis de uso muito frequente são o SG6043, S809 y NACA0012, sendo o primeiro deles o que apresenta melhor desempenho aerodinâmico. Apesar disso, os perfis como o SH3055 são amplamente usados nos negócios das turbinas eólicas. Conclusões: um perfil adequado para uma turbina eólica de pequena escala para zonas arborizadas deve ser projetado para regulação por stall e possuir uma alta robustez ante mudanças na rugosidade superficial. O perfil com maior potencial, segundo a literatura e para essa aplicação é o SG6043, sendo 110 % e 85 % mais eficiente que NACA0012 e S809, respectivamente, para um Re de 2x 105, no entanto, requere mais investigação em temas como o desempenho aerodinâmico dos perfis
RESUMO
The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind-solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar-wind renewable energy systems in agricultural greenhouses.
RESUMO
The high potential of wind speed in the Colombian Caribbean coast is an opportunity to develop offshore wind energy technology. This article contains the wind speed and wind power density in four strategic locations in Colombia (Cartagena, Barranquilla, Santa Marta and La Guajira) at different elevations. The dataset from this study is related to the research paper "Renewables energies in Colombia and the opportunity for the offshore wind technology published in Journal of Cleaner Production (Rueda-Bayona et al.) [1]. Reading and processing numerous files stored in databases could be challenging because it demands software programming to do so, what could difficult the access to valuable data for the community. Also, high compressed files such as NetCDF formats demand specialised software which is not easy obtaining and utilising because it requires skills in a programming language. Then, this study used the NARR-NOAA database [2] and generated local wind and power density data stored in Excel sheets to ease their utilisation.
RESUMO
PREMISE: The El Niño Southern Oscillation (ENSO) affects tropical environmental conditions, potentially altering ecosystem function as El Niño events interact with longer-term climate change. Anomalously warm equatorial Pacific Ocean temperatures affect rainfall and temperature throughout the tropics and coincide with altered leaf flush phenology and increased fruit production in wet tropical forests; however, the understanding of mechanisms underlying this pattern is limited. There is evidence that increases in tropical tree reproduction anticipate El Niño onset, motivating the continued search for a global driver of tropical angiosperm reproduction. We present the solar-wind energy flux hypothesis: that physical energy influx to the Earth's upper atmosphere and magnetosphere, generated by a positive anomaly in the solar wind preceding El Niño development, cues tropical trees to increase resource allocation to reproduction. METHODS: We test this hypothesis using 19 years of data from Luquillo, Puerto Rico, correlating them with measures of solar-wind energy. RESULTS: From 1994 to 2013, the solar-wind energy flux into Earth's magnetosphere (Ein ) was more strongly correlated with the number of species fruiting and flowering than the Niño 3.4 climate index, despite Niño 3.4 being previously identified as a driver of interannual increases in reproduction. CONCLUSIONS: Changes in the global magnetosphere and thermosphere conditions from increased solar-wind energy affect global atmospheric pressure and circulation patterns, principally by weakening the Walker circulation. We discuss the idea that these changes cue interannual increases in tropical tree reproduction and act through an unidentified mechanism that anticipates and synchronizes the reproductive output of the tropical trees with El Niño.
Assuntos
Árvores , Vento , Ecossistema , Porto Rico , Clima TropicalRESUMO
Abstract The demand for electricity is growing worldwide. At the same time, the non-renewable natural resources that account for a large proportion of the global energy matrix are rapidly depleting, which will pose a major challenge in the near future. Therefore, micro-grid models that use renewable energy sources, such as solar and wind, are rapidly developing and are becoming economically viable alternatives. The objective of this study was to evaluate the economic viability of installing solar and wind power generation systems in the NOVVALIGHT electrical components factory located in Campo Largo, Paraná, Brazil. The most viable model was the combination of solar and wind energy, which would generate approximately 260 MWh of energy per year. Using financing provided by the Brazilian Bank for Economic and Social Development (BNDES), this proposal has an eight-year payback period, net present value of BRL 149,097.42, and internal rate of return of 18%, demonstrating its economic viability.
Assuntos
Energia Solar/economia , Energia Eólica/economia , Brasil , IndústriasRESUMO
Abstract The electrical sector is under constant evolution. One of the areas refers to the consumers that come to be generators, implementing distributed generation, interconnected to a smart grid. This article discusses the improvement of an algorithm, already presented in the literature, to make the best temporal allocation of loads, electric vehicle, storage and many sources of generation, aiming at the maximum financial performance, that is, the lowest value for the energy invoice The modeling consists of a Mixed Integer Linear Programming (MILP) algorithm, which considers each component of the system and weighs the maintenance and shelf life of storage devices, basically batteries, loads that can be reallocated and the concept of Vehicle-to-grid, performing a daily analysis. The simulation has considered the hypothetical case of a residence, in which are included storage, electric vehicle and redistribution of loads, as well as wind and solar generation. Several scenarios are simulated, with or without the presence of some of the components. The results indicate that the simplest model, only redistributing the loads, can provide a sensible monetary savings of approximately 60%, while with the application of all the components modeled, there can be a reduction in the invoice of 90%.
Assuntos
Fontes Geradoras de Energia , Energia Eólica , Energia Solar , Veículos AutomotoresRESUMO
Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate.
RESUMO
RESUMEN El incremento en el precio de los combustibles fósiles y los problemas de contaminación derivados de su quema, han provocado la intensificación del aprovechamiento de las energías renovables para producir energía eléctrica. El objetivo de este estudio fue estimar el desarrollo de las energías renovables solar-fotovoltaica y eólica en la generación de energía eléctrica, comparándola con la producida con combustibles fósiles. Se consultaron varios reportes, emitidos por organismos gubernamentales y no gubernamentales, sobre el consumo energético mundial, para producir energía eléctrica a base de combustibles fósiles y de energías renovables, sobre la problemática del cambio climático y las políticas establecidas para incorporar energías renovables en el portafolio energético mundial. Los resultados indicaron que las plantas de generación de energía eléctrica, a partir de energía eólica y solar-fotovoltaica, son competitivas respecto a las plantas que utilizan recursos fósiles. A corto plazo, se esperan leyes regulatorias, con sanciones por contaminación, para limitar los efectos en el cambio climático, lo que elevará el costo de producción de las plantas convencionales, favoreciendo el desarrollo de las plantas de energías renovables, principalmente la solar-fotovoltaica, la cual tiene el mayor crecimiento de las energías renovables.
ABSTRACT The increase in the price of fossil fuels and the pollution problems arising from their burning has resulted in the intensification of the use of renewable energy sources to produce electricity. The purpose of this study was to estimate the development of solar photovoltaic and wind energy in electricity generation, compared to the generation produced with fossil fuels. Several reports issued by governmental and non-governmental bodies on global energy consumption to produce electricity from fossil fuels and from renewable energy sources, on climate change and on poli cies to incorporate renewable energy sources in the global energy portfolio were consulted. The results indicated that electric power from wind and solar photovoltaic energy generation plants are competitive with respect to the plants that use fossil resources. In the short run, regulatory laws that include pollution-related sanctions to limit the effects on climate change are expected to emerge. Such laws are likely to raise the cost of production of conventional plants, while favoring the development of renewable energy plants, mainly solar photovoltaic, which has the fastest growing renewable energy.
RESUMO
To reduce dependence on foreign oil reserves, there has been a push in North America to develop alternative domestic energy resources. Relatively undeveloped renewable energy resources include biofuels and wind and solar energy, many of which occur predominantly on rangelands. Rangelands are also key areas for natural gas development from shales and tight sand formations. Accordingly, policies aimed at greater energy independence are likely to affect the delivery of crucial ecosystem services provided by rangelands. Assessing and dealing with the biophysical and socio-economic effects of energy development on rangeland ecosystems require an integrative and systematic approach that is predicated on a broad understanding of diverse issues related to energy development. In this article, we present a road map for developing an integrative assessment of energy development on rangelands in North America. We summarize current knowledge of socio-economic and biophysical aspects of rangeland based energy development, and we identify knowledge gaps and monitoring indicators to fill these knowledge gaps.
Assuntos
Meio Ambiente , Pradaria , Energia Renovável , Canadá , Conservação dos Recursos Naturais , Ecossistema , Recuperação e Remediação Ambiental/métodos , México , Gás Natural , América do Norte , Fatores Socioeconômicos , Energia Solar , VentoRESUMO
ABSTRACT Green Energy Generation Using Wind energy conversion system is achieved using Lithium Ion Polymer Batteries and Fuzzy logic controller. Presented scheme also provides the constant output power for the stand alone loads like Island, Hills Stations, Ships and Remote locations etc. A fuzzy-logic controller based Wind energy conversion system with permanent magnet synchronous machine is simulated using MATLAB Simulink. The controller provides the constant output voltage in Buck Boost Converter with the wind fluctuations. The SPWM based inverter can be used to produce the constant output voltage with constant frequency. Also a thin and light weight Lithium Ion Polymer Batteries provides the energy back to the Wind energy conversion system , when the wind speed decreases below the base wind velocity. Simulation results are provided to demonstrate the validity of the proposed fuzzy-logic-based controller and comply with the theoretical results. The performance of the system is compared using various controllers.
RESUMO
No Brasil existem muitos locais que não são têm acesso a energia elétrica, principalmente em áreas rurais de agricultura familiar. Isto tem acentuado a importância da utilização de fontes de energia renováveis, como a energia eólica. Este trabalho consistiu no projeto, construção e teste de campo de duas pequenas turbinas eólicas de três pás, utilizando dois perfis aerodinâmicos diferentes. O objetivo foi comparar a influência destes perfis no desempenho aerodinâmico das turbinas. Com a Teoria do Momento do Elemento de Pá (BEM), duas turbinas eólicas de pequeno porte foram projetadas e construídas, tento como diferencial os perfis aerodinâmicos utilizados em sua seção: NACA 0012 (simétrico) e 4412 (cambado). Os resultados obtidos em campo, depois de analisados através de métodos estatísticos apropriados, demonstraram que os desempenhos das turbinas são similares em faixas de rotação próximas à de projeto (?=5). No entanto, em rotações abaixo e acima do projetado o perfil NACA 4412 tem desempenho superior.(AU)
In Brazil, there are many places that do not have access to electric energy, mainly in rural areas with small farms. This situation has accentuated the importance of renewable energy sources, such as wind energy. This work consisted of the design, construction and field testing of two small three-bladed wind turbines with two different aerodynamic profiles. The aim of the study was to compare the profile influence on the turbine aerodynamic performance. Using the blade element momentum (BEM) theory, two wind turbines were designed and built with different cross-section aerodynamic profiles (NACA 0012 (symmetric) and 4412 (chambered)). Following statistical analysis, the results of the field tests demonstrated that the performances of the turbines are similar when the rotational speed is near the designed value (?=5). However, when the rotational speed is under or above the designed value, the NACA 4412 profile yields superior performance.(AU)
Assuntos
Energia Eólica , Energia Renovável , Fontes Geradoras de Energia , FazendasRESUMO
No Brasil existem muitos locais que não são têm acesso a energia elétrica, principalmente em áreas rurais de agricultura familiar. Isto tem acentuado a importância da utilização de fontes de energia renováveis, como a energia eólica. Este trabalho consistiu no projeto, construção e teste de campo de duas pequenas turbinas eólicas de três pás, utilizando dois perfis aerodinâmicos diferentes. O objetivo foi comparar a influência destes perfis no desempenho aerodinâmico das turbinas. Com a Teoria do Momento do Elemento de Pá (BEM), duas turbinas eólicas de pequeno porte foram projetadas e construídas, tento como diferencial os perfis aerodinâmicos utilizados em sua seção: NACA 0012 (simétrico) e 4412 (cambado). Os resultados obtidos em campo, depois de analisados através de métodos estatísticos apropriados, demonstraram que os desempenhos das turbinas são similares em faixas de rotação próximas à de projeto (?=5). No entanto, em rotações abaixo e acima do projetado o perfil NACA 4412 tem desempenho superior.
In Brazil, there are many places that do not have access to electric energy, mainly in rural areas with small farms. This situation has accentuated the importance of renewable energy sources, such as wind energy. This work consisted of the design, construction and field testing of two small three-bladed wind turbines with two different aerodynamic profiles. The aim of the study was to compare the profile influence on the turbine aerodynamic performance. Using the blade element momentum (BEM) theory, two wind turbines were designed and built with different cross-section aerodynamic profiles (NACA 0012 (symmetric) and 4412 (chambered)). Following statistical analysis, the results of the field tests demonstrated that the performances of the turbines are similar when the rotational speed is near the designed value (?=5). However, when the rotational speed is under or above the designed value, the NACA 4412 profile yields superior performance.