Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.019
Filtrar
1.
PeerJ Comput Sci ; 10: e2130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983215

RESUMO

IoT-wireless sensor networks (WSN) have extensive applications in diverse fields such as battlegrounds, commercial sectors, habitat monitoring, buildings, smart homes, and traffic surveillance. WSNs are susceptible to various types of attacks, such as malicious attacks, false data injection attacks, traffic attacks, and HTTP flood attacks. CONNECT attack is a novel attack in WSN. CONNECT attack plays a crucial role through disrupting packet transmission and node connections and significantly impacts CPU performance. Detecting and preventing CONNECT attacks is imperative for enhancing WSN efficiency. During a CONNECT attack, nodes fail to respond to legitimate requests, resulting in connectivity delays, acknowledgment delays, and packet drop attacks in IoT-WSN nodes. This article introduces an Intrusion Detection Algorithm based on the Cyclic Analysis Method (CAM), which incorporates a forward selection approach and backward elimination method. CAM analyzes routing information and behavior within the WSN, facilitating the identification of malicious paths and nodes. The proposed approach aims to pinpoint and mitigate the risks associated with CONNECT attacks, emphasizing the identification of malevolent pathways and nodes while establishing multiple disjoint loop-free routes for seamless data delivery in the IoT-WSN. Furthermore, the performance of CAM is assessed based on metrics such as malicious node detection accuracy, connectivity, packet loss, and network traffic. Simulation results using Matlab software demonstrate superior accuracy in malicious node detection, achieving accuracy in attack detection of approximately 99%, surpassing traditional algorithms accuracy of attack detection.

2.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894128

RESUMO

Intrusion detection systems (IDSs) in wireless sensor networks (WSNs) rely heavily on effective feature selection (FS) for enhanced efficacy. This study proposes a novel approach called Genetic Sacrificial Whale Optimization (GSWO) to address the limitations of conventional methods. GSWO combines a genetic algorithm (GA) and whale optimization algorithms (WOA) modified by applying a new three-population division strategy with a proposed conditional inherited choice (CIC) to overcome premature convergence in WOA. The proposed approach achieves a balance between exploration and exploitation and enhances global search abilities. Additionally, the CatBoost model is employed for classification, effectively handling categorical data with complex patterns. A new technique for fine-tuning CatBoost's hyperparameters is introduced, using effective quantization and the GSWO strategy. Extensive experimentation on various datasets demonstrates the superiority of GSWO-CatBoost, achieving higher accuracy rates on the WSN-DS, WSNBFSF, NSL-KDD, and CICIDS2017 datasets than the existing approaches. The comprehensive evaluations highlight the real-time applicability and accuracy of the proposed method across diverse data sources, including specialized WSN datasets and established benchmarks. Specifically, our GSWO-CatBoost method has an inference time nearly 100 times faster than deep learning methods while achieving high accuracy rates of 99.65%, 99.99%, 99.76%, and 99.74% for WSN-DS, WSNBFSF, NSL-KDD, and CICIDS2017, respectively.

3.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894225

RESUMO

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments.


Assuntos
Internet das Coisas , Humanos , Aplicativos Móveis , Tecnologia sem Fio
4.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732961

RESUMO

Wireless Sensor Networks (WSNs) are crucial in various fields including Health Care Monitoring, Battlefield Surveillance, and Smart Agriculture. However, WSNs are susceptible to malicious attacks due to the massive quantity of sensors within them. Hence, there is a demand for a trust evaluation framework within WSNs to function as a secure system, to identify and isolate malicious or faulty sensor nodes. This information can be leveraged by neighboring nodes, to prevent collaboration in tasks like data aggregation and forwarding. While numerous trust frameworks have been suggested in the literature to assess trust scores and examine the reliability of sensors through direct and indirect communications, implementing these trust evaluation criteria is challenging due to the intricate nature of the trust evaluation process and the limited availability of datasets. This research conducts a novel comparative analysis of three trust management models: "Lightweight Trust Management based on Bayesian and Entropy (LTMBE)", "Beta-based Trust and Reputation Evaluation System (BTRES)", and "Lightweight and Dependable Trust System (LDTS)". To assess the practicality of these trust management models, we compare and examine their performance in multiple scenarios. Additionally, we assess and compare how well the trust management approaches perform in response to two significant cyber-attacks. Based on the experimental comparative analysis, it can be inferred that the LTMBE model is optimal for WSN applications emphasizing high energy efficiency, while the BTRES model is most suitable for WSN applications prioritizing critical security measures. The conducted empirical comparative analysis can act as a benchmark for upcoming research on trust evaluation frameworks for WSNs.

5.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732981

RESUMO

Traditional laboratory-based water quality monitoring and testing approaches are soon to be outdated, mainly because of the need for real-time feedback and immediate responses to emergencies. The more recent wireless sensor network (WSN)-based techniques are evolving to alleviate the problems of monitoring, coverage, and energy management, among others. The inclusion of the Internet of Things (IoT) in WSN techniques can further lead to their improvement in delivering, in real time, effective and efficient water-monitoring systems, reaping from the benefits of IoT wireless systems. However, they still suffer from the inability to deliver accurate real-time data, a lack of reconfigurability, the need to be deployed in ad hoc harsh environments, and their limited acceptability within industry. Electronic sensors are required for them to be effectively incorporated into the IoT WSN water-quality-monitoring system. Very few electronic sensors exist for parameter measurement. This necessitates the incorporation of artificial intelligence (AI) sensory techniques for smart water-quality-monitoring systems for indicators without actual electronic sensors by relating with available sensor data. This approach is in its infancy and is still not yet accepted nor standardized by the industry. This work presents a smart water-quality-monitoring framework featuring an intelligent IoT WSN monitoring system. The system uses AI sensors for indicators without electronic sensors, as the design of electronic sensors is lagging behind monitoring systems. In particular, machine learning algorithms are used to predict E. coli concentrations in water. Six different machine learning models (ridge regression, random forest regressor, stochastic gradient boosting, support vector machine, k-nearest neighbors, and AdaBoost regressor) are used on a sourced dataset. From the results, the best-performing model on average during testing was the AdaBoost regressor (a MAE¯ of 14.37 counts/100 mL), and the worst-performing model was stochastic gradient boosting (a MAE¯ of 42.27 counts/100 mL). The development and application of such a system is not trivial. The best-performing water parameter set (Set A) contained pH, conductivity, chloride, turbidity, nitrates, and chlorophyll.

6.
Sensors (Basel) ; 24(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794103

RESUMO

In the domain of the Internet of Things (IoT), Optical Camera Communication (OCC) has garnered significant attention. This wireless technology employs solid-state lamps as transmitters and image sensors as receivers, offering a promising avenue for reducing energy costs and simplifying electronics. Moreover, image sensors are prevalent in various applications today, enabling dual functionality: recording and communication. However, a challenge arises when optical transmitters are not in close proximity to the camera, leading to sub-pixel projections on the image sensor and introducing strong channel dependence. Previous approaches, such as modifying camera optics or adjusting image sensor parameters, not only limited the camera's utility for purposes beyond communication but also made it challenging to accommodate multiple transmitters. In this paper, a novel sub-pixel optical transmitter discovery algorithm that overcomes these limitations is presented. This algorithm enables the use of OCC in scenarios with static transmitters and receivers without the need for camera modifications. This allows increasing the number of transmitters in a given scenario and alleviates the proximity and size limitations of the transmitters. Implemented in Python with multiprocessing programming schemes for efficiency, the algorithm achieved a 100% detection rate in nighttime scenarios, while there was a 89% detection rate indoors and a 72% rate outdoors during daylight. Detection rates were strongly influenced by varying transmitter types and lighting conditions. False positives remained minimal, and processing times were consistently under 1 s. With these results, the algorithm is considered suitable for export as a web service or as an intermediary component for data conversion into other network technologies.

7.
Sci Rep ; 14(1): 8799, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627447

RESUMO

Wireless sensor networks (WSNs) encounter a significant challenge in ensuring network security due to their operational constraints. This challenge stems from the potential infiltration of malware into WSNs, where a single infected node can rapidly propagate worms to neighboring nodes. To address this issue, this research introduces a stochastic S E I R S model to characterize worm spread in WSNs. Initially, we established that our model possesses a globally positive solution. Subsequently, we determine a threshold value for our stochastic system and derive a set of sufficient conditions that dictate the persistence or extinction of worm spread in WSNs based on the mean behavior. Our study reveals that environmental randomness can impede the spread of malware in WSNs. Moreover, by utilizing various parameter sets, we obtain approximate solutions that showcase these precise findings and validate the effectiveness of the proposed S E I R S model, which surpasses existing models in mitigating worm transmission in WSNs.

8.
Network ; : 1-26, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647158

RESUMO

Wireless sensor networks (WSNs) rely on mobile anchor nodes (MANs) for network connectivity, data aggregation, and location information. However, MANs' mobility can disrupt energy consumption and network performance. Effective path improvisation algorithms are needed for MANs to optimize energy use, reduce data loss, and maintain network connectivity in dynamic WSN environments. To overcome these issues, Topological Information Embedded Convolutional Neural Network based Lotus Effect Optimization for Path Improvisation of the Mobile Anchors in Wireless Sensor Networks (TIECNN-PIMA-OAC-WSN) was proposed. The approach establishes a robust network setup and energy model, employing TIECNN for initial cluster formation and cluster head selection. The chosen cluster head, termed the Mobile Anchor, undergoes optimization using the Lotus effect optimization algorithm to determine the most efficient and shortest path. This work enhances both the topological information processing and energy efficiency of mobile anchor paths. The simulation outcomes prove the proposed technique attains 33.12%, 39.56%, and 42% higher network lifespan for sensor nodes density 40; 38.22%, 29.66%, and 41.33% higher network lifespan for sensor nodes density 60; 37.45%, 35.55%, and 43.67% higher network lifespan for sensor nodes density 80; 32.45%, 29.45%, and 46.66% higher network lifespan for sensor nodes density 100 analysed to the existing methods.

9.
PeerJ Comput Sci ; 10: e1932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660199

RESUMO

Data aggregation plays a critical role in sensor networks for efficient data collection. However, the assumption of uniform initial energy levels among sensors in existing algorithms is unrealistic in practical production applications. This discrepancy in initial energy levels significantly impacts data aggregation in sensor networks. To address this issue, we propose Data Aggregation with Different Initial Energy (DADIE), a novel algorithm that aims to enhance energy-saving, privacy-preserving efficiency, and reduce node death rates in sensor networks with varying initial energy nodes. DADIE considers the transmission distance between nodes and their initial energy levels when forming the network topology, while also limiting the number of child nodes. Furthermore, DADIE reconstructs the aggregation tree before each round of data transmission. This allows nodes closer to the receiving end with higher initial energy to undertake more data aggregation and transmission tasks while limiting energy consumption. As a result, DADIE effectively reduces the node death rate and improves the efficiency of data transmission throughout the network. To enhance network security, DADIE establishes secure transmission channels between transmission nodes prior to data transmission, and it employs slice-and-mix technology within the network. Our experimental simulations demonstrate that the proposed DADIE algorithm effectively resolves the data aggregation challenges in sensor networks with varying initial energy nodes. It achieves 5-20% lower communication overhead and energy consumption, 10-20% higher security, and 10-30% lower node mortality than existing algorithms.

10.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676032

RESUMO

Over the past few years, the scale of sensor networks has greatly expanded. This generates extended spatiotemporal datasets, which form a crucial information resource in numerous fields, ranging from sports and healthcare to environmental science and surveillance. Unfortunately, these datasets often contain missing values due to systematic or inadvertent sensor misoperation. This incompleteness hampers the subsequent data analysis, yet addressing these missing observations forms a challenging problem. This is especially the case when both the temporal correlation of timestamps within a single sensor and the spatial correlation between sensors are important. Here, we apply and evaluate 12 imputation methods to complete the missing values in a dataset originating from large-scale environmental monitoring. As part of a large citizen science project, IoT-based microclimate sensors were deployed for six months in 4400 gardens across the region of Flanders, generating 15-min recordings of temperature and soil moisture. Methods based on spatial recovery as well as time-based imputation were evaluated, including Spline Interpolation, MissForest, MICE, MCMC, M-RNN, BRITS, and others. The performance of these imputation methods was evaluated for different proportions of missing data (ranging from 10% to 50%), as well as a realistic missing value scenario. Techniques leveraging the spatial features of the data tend to outperform the time-based methods, with matrix completion techniques providing the best performance. Our results therefore provide a tool to maximize the benefit from costly, large-scale environmental monitoring efforts.

11.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610236

RESUMO

The reliability and scalability of Linear Wireless Sensor Networks (LWSNs) are limited by the high packet loss probabilities (PLP) experienced by the packets generated at nodes far from the sink node. This is an important limitation in Smart City applications, where timely data collection is critical for decision making. Unfortunately, previous works have not addressed this problem and have only focused on improving the network's overall performance. In this work, we propose a Distance-Based Queuing (DBQ) scheme that can be incorporated into MAC protocols for LWSNs to improve reliability and scalability without requiring extra local processing or additional signaling at the nodes. The DBQ scheme prioritizes the transmission of relay packets based on their hop distance to the sink node, ensuring that all packets experience the same PLP. To evaluate the effectiveness of our proposal, we developed an analytical model and conducted extensive discrete-event simulations. Our numerical results demonstrate that the DBQ scheme significantly improves the reliability and scalability of the network by achieving the same average PLP and throughput for all nodes, regardless of traffic intensities and network sizes.

12.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610301

RESUMO

Existing secure data aggregation protocols are weaker to eliminate data redundancy and protect wireless sensor networks (WSNs). Only some existing approaches have solved this singular issue when aggregating data. However, there is a need for a multi-featured protocol to handle the multiple problems of data aggregation, such as energy efficiency, authentication, authorization, and maintaining the security of the network. Looking at the significant demand for multi-featured data aggregation protocol, we propose secure data aggregation using authentication and authorization (SDAAA) protocol to detect malicious attacks, particularly cyberattacks such as sybil and sinkhole, to extend network performance. These attacks are more complex to address through existing cryptographic protocols. The proposed SDAAA protocol comprises a node authorization algorithm that permits legitimate nodes to communicate within the network. This SDAAA protocol's methods help improve the quality of service (QoS) parameters. Furthermore, we introduce a mathematical model to improve accuracy, energy efficiency, data freshness, authorization, and authentication. Finally, our protocol is tested in an intelligent healthcare WSN patient-monitoring application scenario and verified using an OMNET++ simulator. Based upon the results, we confirm that our proposed SDAAA protocol attains a throughput of 444 kbs, representing a 98% of data/network channel capacity rate; an energy consumption of 2.6 joules, representing 99% network energy efficiency; an effected network of 2.45, representing 99.5% achieved overall performance of the network; and time complexity of 0.08 s, representing 98.5% efficiency of the proposed SDAAA approach. By contrast, contending protocols such as SD, EEHA, HAS, IIF, and RHC have throughput ranges between 415-443, representing 85-90% of the data rate/channel capacity of the network; energy consumption in the range of 3.0-3.6 joules, representing 88-95% energy efficiency of the network; effected network range of 2.98, representing 72-89% improved overall performance of the network; and time complexity in the range of 0.20 s, representing 72-89% efficiency of the proposed SDAAA approach. Therefore, our proposed SDAAA protocol outperforms other known approaches, such as SD, EEHA, HAS, IIF, and RHC, designed for secure data aggregation in a similar environment.

13.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610327

RESUMO

Structural health monitoring (SHM) is critical for ensuring the safety of infrastructure such as bridges. This article presents a digital twin solution for the SHM of railway bridges using low-cost wireless accelerometers and machine learning (ML). The system architecture combines on-premises edge computing and cloud analytics to enable efficient real-time monitoring and complete storage of relevant time-history datasets. After train crossings, the accelerometers stream raw vibration data, which are processed in the frequency domain and analyzed using machine learning to detect anomalies that indicate potential structural issues. The digital twin approach is demonstrated on an in-service railway bridge for which vibration data were collected over two years under normal operating conditions. By learning allowable ranges for vibration patterns, the digital twin model identifies abnormal spectral peaks that indicate potential changes in structural integrity. The long-term pilot proves that this affordable SHM system can provide automated and real-time warnings of bridge damage and also supports the use of in-house-designed sensors with lower cost and edge computing capabilities such as those used in the demonstration. The successful on-premises-cloud hybrid implementation provides a cost effective and scalable model for expanding monitoring to thousands of railway bridges, democratizing SHM to improve safety by avoiding catastrophic failures.

14.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610541

RESUMO

RPL-Routing Protocol for Low-Power and Lossy Networks (usually pronounced "ripple")-is the de facto standard for IoT networks. However, it neglects to exploit IoT devices' full capacity to optimize their transmission power, mainly because it is quite challenging to do so in parallel with the routing strategy, given the dynamic nature of wireless links and the typically constrained resources of IoT devices. Adapting the transmission power requires dynamically assessing many parameters, such as the probability of packet collisions, energy consumption, the number of hops, and interference. This paper introduces Adaptive Control of Transmission Power for RPL (ACTOR) for the dynamic optimization of transmission power. ACTOR aims to improve throughput in dense networks by passively exploring different transmission power levels. The classic solutions of bandit theory, including the Upper Confidence Bound (UCB) and Discounted UCB, accelerate the convergence of the exploration and guarantee its optimality. ACTOR is also enhanced via mechanisms to blacklist undesirable transmission power levels and stabilize the topology of parent-child negotiations. The results of the experiments conducted on our 40-node, 12-node testbed demonstrate that ACTOR achieves a higher packet delivery ratio by almost 20%, reduces the transmission power of nodes by up to 10 dBm, and maintains a stable topology with significantly fewer parent switches compared to the standard RPL and the selected benchmarks. These findings are consistent with simulations conducted across 7 different scenarios, where improvements in end-to-end delay, packet delivery, and energy consumption were observed by up to 50%.

15.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544018

RESUMO

The moisture content within the concrete pore network significantly influences the mechanical, thermal, and durability characteristics of concrete structures. This paper introduces a novel fully embedded wireless temperature and relative humidity sensor connected to an automatic acquisition system designed for continuous concrete monitoring. Relative humidity measurements from this new sensor are compared with those obtained by a commercial system based on the borehole method at different depths (2.5 and 4.0 cm) and exposure conditions (oven drying and humid chamber). The results allow for proving that both systems provide consistent internal relative humidity measurements aligned with the exposure conditions and highlight the capability of fully embedded wireless sensors as a practical and reliable alternative to the conventional borehole method. Additionally, the continuous monitoring of the wireless cast-in sensor exhibits reliability during unintended temperature fluctuations, emphasizing the effectiveness of permanently installed sensors in promptly detecting unintended curing variations in real time. The continuous real-time information provided combined with the practicality of these sensors might assist construction managers to improve the quality control of the concrete curing process and shrinkage behavior, and ensure the integrity of concrete surface finishing.

16.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544256

RESUMO

Energy efficiency and security issues are the main concerns in wireless sensor networks (WSNs) because of limited energy resources and the broadcast nature of wireless communication. Therefore, how to improve the energy efficiency of WSNs while enhancing security performance has attracted widespread attention. In order to solve this problem, this paper proposes a new deep reinforcement learning (DRL)-based strategy, i.e., DeepNR strategy, to enhance the energy efficiency and security performance of WSN. Specifically, the proposed DeepNR strategy approximates the Q-value by designing a deep neural network (DNN) to adaptively learn the state information. It also designs DRL-based multi-level decision-making to learn and optimize the data transmission paths in real time, which eventually achieves accurate prediction and decision-making of the network. To further enhance security performance, the DeepNR strategy includes a defense mechanism that responds to detected attacks in real time to ensure the normal operation of the network. In addition, DeepNR adaptively adjusts its strategy to cope with changing network environments and attack patterns through deep learning models. Experimental results show that the proposed DeepNR outperforms the conventional methods, demonstrating a remarkable 30% improvement in network lifespan, a 25% increase in network data throughput, and a 20% enhancement in security measures.

17.
Math Biosci Eng ; 21(3): 3967-3998, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38549315

RESUMO

The main goal of this work was to propose a novel mathematical model for malware propagation on wireless sensor networks (WSN). Specifically, the proposed model was a compartmental and global one whose temporal dynamics were described by means of a system of ordinary differential equations. This proposal was more realistic than others that have appeared in the scientific literature since. On the one hand, considering the specifications of malicious code propagation, several types of nodes were considered (susceptible, patched susceptible, latent non-infectious, latent infectious, compromised non-infectious, compromised infectious, damaged, ad deactivated), and on the other hand, a new and more realistic term of the incidence was defined and used based on some particular characteristics of transmission protocol on wireless sensor networks.

18.
Math Biosci Eng ; 21(3): 4587-4625, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549341

RESUMO

Cluster routing is a critical routing approach in wireless sensor networks (WSNs). However, the uneven distribution of selected cluster head nodes and impractical data transmission paths can result in uneven depletion of network energy. For this purpose, we introduce a new routing strategy for clustered wireless sensor networks that utilizes an improved beluga whale optimization algorithm, called tCBWO-DPR. In the selection process of cluster heads, we introduce a new excitation function to evaluate and select more suitable candidate cluster heads by establishing the correlation between the energy of node and the positional relationship of nodes. In addition, the beluga whale optimization (BWO) algorithm has been improved by incorporating the cosine factor and t-distribution to enhance its local and global search capabilities, as well as to improve its convergence speed and ability. For the data transmission path, we use Prim's algorithm to construct a spanning tree and introduce DPR for determining the optimal route between cluster heads based on the correlation distances of cluster heads. This effectively shortens the data transmission path and enhances network stability. Simulation results show that the improved beluga whale optimization based algorithm can effectively improve the survival cycle and reduce the average energy consumption of the network.

19.
Heliyon ; 10(5): e25998, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468976

RESUMO

The convergence of wireless sensor network-assisted Internet of Things has diverse applications. In most applications, the sensors are battery-powered, and it is necessary to use the energy judiciously to extend their functional duration effectively. Mobile sinks-based data collection is used to extend the lifespan of these networks. But providing a scalable and effective solution with consideration for multi-criteria factors of quality of service and lifetime maximization is still a challenge. This work addresses this problem with a hybrid wireless sensor network-Long term evolution assisted architecture. The problem of maximizing lifetime and providing multi-factor quality of service is solved as a two-stage optimization problem involving clustering and data collection path scheduling. Hybrid meta-heuristics is used to solve the clustering optimization problem. Minimal Steiner tree-based graph theory is applied to schedule the data collection path for sinks. Unlike existing works, the lifetime maximization without QoS degradation is addressed by hybridizing multiple approaches of multi-criteria optimal clustering, optimal path scheduling, and network adaptive traffic class-based data scheduling. This hybridization helps to extend the lifetime and enhance the QoS regarding packet delivery within the proposed solution. Through simulation analysis, the introduced approach yields a noteworthy increase of at least 6% and reduces packet delivery delay by 26% compared to existing methodologies.

20.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475113

RESUMO

This paper describes the successes and failures after 4 years of continuous operation of a network of sensors, communicating nodes, and gateways deployed on the Etna Volcano in Sicily since 2019, including a period of Etna intense volcanic activity that occurred in 2021 and resulted in over 60 paroxysms. It documents how the installation of gateways at medium altitude allowed for data collection from sensors up to the summit craters. Most of the sensors left on the volcanic edifice during winters and during this period of intense volcanic activity were destroyed, but the whole gateway infrastructure remained fully operational, allowing for a very fruitful new field campaign two years later, in August 2023. Our experience has shown that the best strategy for IoT deployment on very active and/or high-altitude volcanoes like Etna is to permanently install gateways in areas where they are protected both from meteorological and volcanic hazards, that is mainly at the foot of the volcanic edifice, and to deploy temporary sensors and communicating nodes in the more exposed areas during field trips or in the summer season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...