Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Biol Psychiatry ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950809

RESUMO

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

2.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005428

RESUMO

Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences in the degree of mitochondrial length in FXS. Significant differences are also observable in the overall number of mitochondria in male FXS mice, however, colocalization analyses between TOMM20 and PMPCB reveal that the integrity of these compartments is most disrupted in female FXS mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.

3.
Elife ; 132024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012692

RESUMO

Behavioral and pharmaceutical interventions reverse defects associated with increased cerebellar long-term depression in a mouse model of Fragile X syndrome.


Assuntos
Cerebelo , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Aprendizagem , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Cerebelo/fisiologia , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
4.
Orphanet J Rare Dis ; 19(1): 264, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997701

RESUMO

BACKGROUND AND OBJECTIVES: Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG-repeat expansions (> 200) in the FMR1 gene leading to lack of expression. Espansion between 55 and 200 triplets fall within the premutation range (PM) and can lead to different clinical conditions, including fragile X- primary ovarian insufficiency (FXPOI), fragile X-associated neuropsychiatric disorders (FXAND) and fragile X-associated tremor/ataxia syndrome (FXTAS). Although there is not a current cure for FXS and for the Fragile X-PM associated conditions (FXPAC), timely diagnosis as well as the implementation of treatment strategies, psychoeducation and behavioral intervention may improve the quality of life (QoL) of people with FXS or FXPAC. With the aim to investigate the main areas of concerns and the priorities of treatment in these populations, the Italian National Fragile X Association in collaboration with Bambino Gesù Children's Hospital, conducted a survey among Italian participants. METHOD: Here, we present a survey based on the previous study that Weber and colleagues conducted in 2019 and that aimed to investigate the main symptoms and challenges in American individuals with FXS. The survey has been translated into Italian language to explore FXS needs of treatment also among Italian individuals affected by FXS, family members, caretakers, and professionals. Furthermore, we added a section designated only to people with PM, to investigate the main symptoms, daily living challenges and treatment priorities. RESULTS: Anxiety, challenging behaviors, language difficulties and learning disabilities were considered the major areas of concern in FXS, while PM was reported as strongly associated to cognitive problems, social anxiety, and overthinking. Anxiety was reported as a treatment priority in both FXS and PM. CONCLUSION: FXS and PM can be associated with a range of cognitive, affective, and physical health complications. Taking a patient-first perspective may help clinicians to better characterize the cognitive-behavioral phenotype associated to these conditions, and eventually to implement tailored therapeutic approaches.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Feminino , Itália , Masculino , Inquéritos e Questionários , Adulto , Qualidade de Vida , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/terapia , Adulto Jovem , Adolescente , Tremor/genética , Tremor/terapia , Criança
5.
J Neurochem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976626

RESUMO

DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.

6.
J Mol Diagn ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032823

RESUMO

Fragile X syndrome (FXS) is the leading genetic cause of intellectual disability and autism spectrum disorders. Female premutation carriers exhibit no obvious symptoms during reproductive age, but the premutation allele can expand to full mutation when transmitted to the fetus.. Given the relatively low prevalence but large population, the distinct healthcare system, the middle-income economic status, and low awareness among public and medical professionals, the optimal genetic screening strategy remains unknown. We conducted a pilot study of Fragile X carrier screening in China, involving 22,245 pregnant women and women with childbearing intentions, divided into control and pilot groups. The prevalence of Fragile X carriers in the control group was 1/850, similar to East Asian populations. Strikingly, the prevalence of Fragile X carriers in the pilot group was 1/356, which can be attributed to extensive medical training, participant education, and rigorous genetic counseling and testing protocols. Cost-effectiveness analyses of four strategies-no screening, population-based screening, targeted screening, and our pilot screening-indicated that our pilot screening was the most cost-effective option. A follow-up survey revealed that 55% of respondents reported undergoing screening due to their family history. We have successfully established a standardized system, addressing the challenges of low prevalence, limited awareness, and genetic testing complexities. Our study provides practical recommendations for implementing Fragile X carrier screening in China.

7.
Res Sq ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38946987

RESUMO

Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics (PK) and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding in period 1 of the study, participants who received BPN14770 in the period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.

8.
Elife ; 122024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953282

RESUMO

The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.


Assuntos
Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Células de Purkinje , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/genética , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células de Purkinje/metabolismo , Plasticidade Neuronal , Masculino , Aprendizagem
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000085

RESUMO

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Assuntos
Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Hipocampo , Plasticidade Neuronal , Sinaptotagminas , Animais , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Feminino , Ratos , Hipocampo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
10.
Am J Med Genet A ; : e63819, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016627

RESUMO

Turner syndrome (TS) is defined by partial or complete absence of a sex chromosome. Little is known about the phenotype of individuals with TS mosaic with trisomy X (45,X/47,XXX or 45,X/46,XX/47,XXX) (~3% of TS). We compared the diagnostic, perinatal, medical, and neurodevelopmental comorbidities of mosaic 45,X/47,XXX (n = 35, 9.4%) with nonmosaic 45,X (n = 142) and mosaic 45,X/46,XX (n = 66). Females with 45,X/47,XXX had fewer neonatal concerns and lower prevalence of several TS-related diagnoses compared with 45,X; however the prevalence of neurodevelopmental and psychiatric diagnoses were not different. Compared to females with 45,X/46,XX, the 45,X/47,XXX group was significantly more likely to have structural renal anomalies (18% vs. 3%; p = 0.03). They were twice as likely to have congenital heart disease (32% vs. 15%, p = 0.08) and less likely to experience spontaneous menarche (46% vs. 75% of those over age 10, p = 0.06), although not statistically significant. Congenital anomalies, hypertension, and hearing loss were primarily attributable to a higher proportion of 45,X cells, while preserved ovarian function was most associated with a higher proportion of 46,XX cells. In this large TS cohort, 45,X/47,XXX was more common than previously reported, individuals were phenotypically less affected than those with 45,X, but did have trends for several more TS-related diagnoses than individuals with 45,X/46,XX.

11.
Front Cell Neurosci ; 18: 1393536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022311

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.

12.
Cureus ; 16(6): e62552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39022510

RESUMO

This report aims to investigate the association between 47,XXX and fetal hydrops by examining a clinical case and performing a comprehensive review of the relevant literature. A 34-year-old Japanese woman, gravida 2, para 1, was diagnosed with fetal hydrops at 27 weeks' gestation. Prenatal testing revealed a 47,XXX karyotype. Interventions included thoracocentesis and a thoracoamniotic shunt. A cesarean delivery was performed at 34 weeks and the female neonate initially had respiratory challenges. After 69 days in the neonatal intensive care unit, the infant was discharged in stable condition, and the 47,XXX karyotype was confirmed. This case may add evidence suggesting an association between 47,XXX and fetal hydrops. Chromosomal abnormalities are causes of fetal hydrops, but its association with 47,XXX remains unclear. Providing comprehensive information on this condition to couples is crucial, and considering the inclusion of fetal hydrops in the list of associated conditions might be advisable.

13.
Cell Rep ; 43(6): 114330, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865241

RESUMO

The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Neurônios , RNA Mensageiro , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Estresse Fisiológico/genética , Regiões 5' não Traduzidas/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Repetições de Trinucleotídeos/genética , Expansão das Repetições de Trinucleotídeos/genética
14.
Genes (Basel) ; 15(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927619

RESUMO

Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X messenger ribonucleoprotein 1 (FMR1) gene and known to be a leading cause of inherited intellectual disability globally. It results in a range of intellectual, developmental, and behavioral problems. Fragile X premutation-associated conditions (FXPAC), caused by a smaller CGG expansion (55 to 200 CGG repeats) in the FMR1 gene, are linked to other conditions that increase morbidity and mortality for affected persons. Limited research has been conducted on the burden, characteristics, diagnosis, and management of these conditions in Africa. This comprehensive review provides an overview of the current literature on FXS and FXPAC in Africa. The issues addressed include epidemiology, clinical features, discrimination against affected persons, limited awareness and research, and poor access to resources, including genetic services and treatment programs. This paper provides an in-depth analysis of the existing worldwide data for the diagnosis and treatment of fragile X disorders. This review will improve the understanding of FXS and FXPAC in Africa by incorporating existing knowledge, identifying research gaps, and potential topics for future research to enhance the well-being of individuals and families affected by FXS and FXPAC.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/epidemiologia , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , África/epidemiologia , Mutação , Expansão das Repetições de Trinucleotídeos/genética
15.
Biol Psychiatry ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945386

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a genetic condition associated with increased risk for social anxiety and avoidance. Using functional near-infrared spectroscopy (fNIRS), we previously demonstrated aberrant neural activity responding to faces in young girls with FXS cross-sectionally. Here, we tested the hypothesis that abnormalities in neural activation and sensitization would increase with age in 65 girls with FXS, ages 5-16 years, relative to an age-matched control group of 52 girls who had comparable cognitive function and clinical symptoms. METHODS: Functional NIRS data were collected at two time points, 2.8±0.6 years apart during a face-processing task. Linear mixed-effects models examined longitudinal neural profiles in girls with FXS and control. Correlational analysis was performed to examine associations between neural sensitization (increasing neural response to repeated stimuli), and clinical ratings. RESULTS: In girls with FXS, 32 participants had one, and 24 had two fNIRS scans. In controls, 21 had one, and 29 had two fNIRS scans. Brain activations in the right middle and superior frontal gyri were higher in FXS than controls at both time points. Neural sensitization also increased in FXS at a higher rate than controls in the superior frontal gyrus when responding to upright faces. For the FXS group, sensitization in the superior frontal gyrus positively correlated with longitudinal increases in anxiety and social avoidance scores. CONCLUSION: Girls with FXS show increasingly abnormal neural activation and sensitization responding to faces over time. Aberrant neural sensitization in girls with FXS is associated with longitudinal changes in anxiety and social skills.

16.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853554

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Adiponectina , Giro Denteado , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Plasticidade Neuronal , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Adiponectina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Receptores de AMPA/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38823765

RESUMO

Fragile X syndrome (FXS) is caused by epigenetic silencing of the Fmr1 gene, leading to the deletion of the coding protein FMRP. FXS induces abnormal hippocampal autophagy and mTOR overactivation. However, it remains unclear whether FMRP regulates hippocampal autophagy through the AKT/mTOR pathway, which influences the neural behavior of FXS. Our study revealed that FMRP deficiency increased the protein levels of p-ULK-1 and p62 and decreased LC3II/LC3I level in Fmr1 knockout (KO) mice. The mouse hippocampal neuronal cell line HT22 with knockdown of Fmr1 by lentivirus showed that the protein levels of p-ULK-1 and p62 were increased, whereas LC3II/LC3I was unchanged. Further observations revealed that FMRP deficiency obstructed autophagic flow in HT22 cells. Therefore, FMRP deficiency inhibited autophagy in the mouse hippocampus and HT22 cells. Moreover, FMRP deficiency increased reactive oxygen species (ROS) level, decreased the co-localization between the mitochondrial outer membrane proteins TOM20 and LC3 in HT22 cells, and caused a decrease in the mitochondrial autophagy protein PINK1 in HT22 cells and Fmr1 KO mice, indicating that FMRP deficiency caused mitochondrial autophagy disorder in HT22 cells and Fmr1 KO mice. To explore the mechanism by which FMRP deficiency inhibits autophagy, we examined the AKT/mTOR signaling pathway in the hippocampus of Fmr1 KO mice, found that FMRP deficiency caused overactivation of the AKT/mTOR pathway. Rapamycin-mediated mTOR inhibition activated and enhanced mitochondrial autophagy. Finally, we examined whether rapamycin affected the neurobehavior of Fmr1 KO mice. The Fmr1 KO mice exhibited stereotypical behavior, impaired social ability, and learning and memory impairment, while rapamycin treatment improved behavioral disorders in Fmr1 KO mice. Thus, our study revealed the molecular mechanism by which FMRP regulates autophagy function, clarifying the role of hippocampal neuron mitochondrial autophagy in the pathogenesis of FXS, and providing novel insights into potential therapeutic targets of FXS.

18.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928388

RESUMO

Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.


Assuntos
Dieta Cetogênica , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sono , Animais , Camundongos , Síndrome do Cromossomo X Frágil/dietoterapia , Masculino , Sono/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Eletroencefalografia , Modelos Animais de Doenças
19.
Biology (Basel) ; 13(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927312

RESUMO

Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and autism spectrum disorder, is caused by a full mutation (>200 CGG repeats) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. Individuals with FXS experience various challenges related to social interaction (SI). Animal models, such as the Drosophila melanogaster model for FXS where the only ortholog of human FMR1 (dFMR1) is mutated, have played a crucial role in the understanding of FXS. The aim of this study was to investigate SI in the dFMR1B55 mutants (the groups of flies of both sexes simultaneously) using the novel Drosophila Shallow Chamber and a Python data processing pipeline based on social network analysis (SNA). In comparison with wild-type flies (w1118), SNA analysis in dFMR1B55 mutants revealed hypoactivity, fewer connections in their networks, longer interaction duration, a lower ability to transmit information efficiently, fewer alternative pathways for information transmission, a higher variability in the number of interactions they achieved, and flies tended to stay near the boundaries of the testing chamber. These observed alterations indicate the presence of characteristic strain-dependent social networks in dFMR1B55 flies, commonly referred to as the group phenotype. Finally, combining novel research tools is a valuable method for SI research in fruit flies.

20.
Front Psychol ; 15: 1305597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939222

RESUMO

Introduction: Metformin has been used as a targeted treatment to potentially improve cognition and slow the typical IQ decline that occurs during development among individuals with fragile X syndrome (FXS). In this follow-up study, we are following the trajectory of IQ and adaptive behavior changes over 1 to 3 years in individuals with FXS who are clinically treated with metformin in an open label trial. Method: Individuals with FXS ages 6 to 25 years (mean 13.15 ± 5.50) and nonverbal IQ mean 57.69 (±15.46) were treated for 1-3 years (1.88 ± 0.63). They all had a baseline IQ test using the Leiter-III non-verbal cognitive assessment and the Vineland-III adaptive behavior assessment before the start of metformin. Repeat Leiter-III and Vineland-III were completed after at least 1 year of metformin (500-1,000 mg/dose given twice a day). Result: There were no significant changes in non-verbal IQ or in the adaptive behavior measurements at FDR < 0.05. The findings thus far indicate that both IQ and adaptive behavior are stable over time, and we did not see a significant decline in either measure. Conclusion: Overall, the small sample size and short follow-up duration limit the interpretation of the effects of metformin on cognitive development and adaptive functioning. There is individual variability but overall for the group there was no significant decline in IQ or adaptive behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...