Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 11(11): 3655-3664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900544

RESUMO

Tyrosine-decahydrofluorene derivatives feature a fused [6.5.6] tricarbocyclic core and a 13-membered para-cyclophane ether. Herein, we identified new xenoacremones A, B, and C (1-3) from the fungal strain Xenoacremonium sinensis ML-31 and elucidated their biosynthetic pathway using gene deletion in the native strain and heterologous expression in Aspergillus nidulans. The hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) XenE together with enoyl reductase XenG were confirmed to be responsible for the formation of the tyrosine-nonaketide skeleton. This skeleton was subsequently dehydrated by XenA to afford a pyrrolidinone moiety. XenF catalyzed a novel sigmatropic rearrangement to yield a key cyclohexane intermediate as a prerequisite for the formation of the multi-ring system. Subsequent oxidation catalyzed by XenD supplied the substrate for XenC to link the para-cyclophane ether, which underwent subsequent spontaneous Diels-Alder reaction to give the end products. Thus, the results indicated that three novel enzymes XenF, XenD, and XenC coordinate to assemble the [6.5.6] tricarbocyclic ring and para-cyclophane ether during biosynthesis of complex tyrosine-decahydrofluorene derivatives.

2.
Acta Pharmaceutica Sinica B ; (6): 3655-3664, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922432

RESUMO

Tyrosine-decahydrofluorene derivatives feature a fused [6.5.6] tricarbocyclic core and a 13-membered

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...