Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 207: 108196, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260520

RESUMO

Entomopathogenic nematodes are soil-dwelling living organisms widely employed in the biological control of agricultural insect pests, serving as a significant alternative to pesticides. In laboratory procedures, the counting process remains the most common, labor-intensive, time-consuming, and approximate aspect of studies related to entomopathogenic nematodes. In this context, a novel method has been proposed for the detection and quantification of Steinernema feltiae isolate using computer vision on microscope images. The proposed method involves two primary algorithmic steps: framing and isolation. Compared to YOLO-V5m, YOLO-V7m, and YOLO-V8m, the A-star-based developed network demonstrates significantly improved detection accuracy compared to other networks. The novel method is particularly effective in facilitating the detection of overlapping nematodes. The developed algorithm excludes processes that increase space and time complexity, such as the weight document, which contains the learned parameters of the deep learning model, model integration, and prediction time, resulting in more efficient operation. The results indicate the feasibility of the proposed method for detecting and counting entomopathogenic nematodes.

2.
Bioengineering (Basel) ; 11(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39199725

RESUMO

When dealing with small targets in lung cancer detection, the YOLO V8 algorithm may encounter false positives and misses. To address this issue, this study proposes an enhanced YOLO V8 detection model. The model integrates a large separable kernel attention mechanism into the C2f module to expand the information retrieval range, strengthens the extraction of lung cancer features in the Backbone section, and achieves effective interaction between multi-scale features in the Neck section, thereby enhancing feature representation and robustness. Additionally, depth-wise convolution and Coordinate Attention mechanisms are embedded in the Fast Spatial Pyramid Pooling module to reduce feature loss and improve detection accuracy. This study introduces a Minimum Point Distance-based IOU loss to enhance correlation between predicted and ground truth bounding boxes, improving adaptability and accuracy in small target detection. Experimental validation demonstrates that the improved network outperforms other mainstream detection networks in terms of average precision values and surpasses other classification networks in terms of accuracy. These findings validate the outstanding performance of the enhanced model in the localization and recognition aspects of lung cancer auxiliary diagnosis.

3.
Sci Rep ; 14(1): 14389, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909147

RESUMO

Vehicle identification systems are vital components that enable many aspects of contemporary life, such as safety, trade, transit, and law enforcement. They improve community and individual well-being by increasing vehicle management, security, and transparency. These tasks entail locating and extracting license plates from images or video frames using computer vision and machine learning techniques, followed by recognizing the letters or digits on the plates. This paper proposes a new license plate detection and recognition method based on the deep learning YOLO v8 method, image processing techniques, and the OCR technique for text recognition. For this, the first step was the dataset creation, when gathering 270 images from the internet. Afterward, CVAT (Computer Vision Annotation Tool) was used to annotate the dataset, which is an open-source software platform made to make computer vision tasks easier to annotate and label images and videos. Subsequently, the newly released Yolo version, the Yolo v8, has been employed to detect the number plate area in the input image. Subsequently, after extracting the plate the k-means clustering algorithm, the thresholding techniques, and the opening morphological operation were used to enhance the image and make the characters in the license plate clearer before using OCR. The next step in this process is using the OCR technique to extract the characters. Eventually, a text file containing only the character reflecting the vehicle's country is generated. To ameliorate the efficiency of the proposed approach, several metrics were employed, namely precision, recall, F1-Score, and CLA. In addition, a comparison of the proposed method with existing techniques in the literature has been given. The suggested method obtained convincing results in both detection as well as recognition by obtaining an accuracy of 99% in detection and 98% in character recognition.

4.
Mar Pollut Bull ; 203: 116475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761680

RESUMO

As marine resources and transportation develop, oil spill incidents are increasing, endangering marine ecosystems and human lives. Rapidly and accurately identifying marine oil spill is of utmost importance in protecting marine ecosystems. Marine oil spill detection methods based on deep learning and computer vision have the great potential significantly enhance detection efficiency and accuracy, but their performance is often limited by the scarcity of real oil spill samples, posing a challenging to train a precise detection model. This study introduces a detection method specifically designed for scenarios with limited sample sizes. First, the small sample dataset of marine oil spill taken by Landsat-8 satellite is used as the training set. Then, a single image generative adversarial network (SinGAN) capable of training with a single oil spill image is constructed for expanding the dataset, generating diverse marine oil spill samples with different shapes. Second, a YOLO-v8 model is pretrained via the method of transfer learning and then trained with dataset before and after augmentation separately for real-time and efficient oil spill detection. Experimental results have demonstrated that the YOLO-v8 model, trained on an expanded dataset, exhibits notable enhancements in recall, precision, and average precision, with improvements of 12.3 %, 6.3 %, and 11.3 % respectively, compared to the unexpanded dataset. It reveals that our marine oil spill detection model based on YOLO-v8 exhibits leading or comparable performance in terms of recall, precision, and AP metrics. The data augmentation technique based on SinGAN contributes to the performance of other popular object detection algorithms as well.


Assuntos
Algoritmos , Monitoramento Ambiental , Poluição por Petróleo , Monitoramento Ambiental/métodos , Aprendizado Profundo
5.
J Forensic Sci ; 69(4): 1304-1319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38572826

RESUMO

Videos are considered as most trustworthy means of communication in the present digital era. The advancement in multimedia technology has made video content sharing and manipulation very easy. Hence, the video authenticity is a challenging task for the research community. Video forensics refer to uncovering the forgery traces. The detection of spatiotemporal object-removal forgery in surveillance videos is crucial for judicial forensics, as the presence of objects in the video has significant information as legal evidence. The author proposes a passive max-median averaging motion residual algorithm for revealing the forgery traces, successfully giving visible object-removal traces followed by a deep learning approach, YOLO-V8, for forged region localization. YOLO-V8 is the latest deep learning model, which has a wide scope for real-time application. The proposed method utilizes YOLO-V8 for object-removal forgery in surveillance videos. The network is trained on the SYSU-OBJFORG dataset for object-removal forged region localization in videos. The fine-tuned YOLO-V8 successfully classifies and localizes the object-removal tampered region with an F1-score of 0.99 and a precision of 0.99. The observed high confidence score of the bounding box around the forged region makes the model reliable. This fine-tuned YOLO-V8 would be a better choice in real-time applications as it solves the complex object-based forgery detection in videos. The performance of the proposed system is far better than the existing deep learning approach.

6.
Front Plant Sci ; 15: 1375118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660450

RESUMO

In order to address the challenges of inefficiency and insufficient accuracy in the manual identification of young citrus fruits during thinning processes, this study proposes a detection methodology using the you only look once for complex backgrounds of young citrus fruits (YCCB-YOLO) approach. The method first constructs a dataset containing images of young citrus fruits in a real orchard environment. To improve the detection accuracy while maintaining the computational efficiency, the study reconstructs the detection head and backbone network using pointwise convolution (PWonv) lightweight network, which reduces the complexity of the model without affecting the performance. In addition, the ability of the model to accurately detect young citrus fruits in complex backgrounds is enhanced by integrating the fusion attention mechanism. Meanwhile, the simplified spatial pyramid pooling fast-large kernel separated attention (SimSPPF-LSKA) feature pyramid was introduced to further enhance the multi-feature extraction capability of the model. Finally, the Adam optimization function was used to strengthen the nonlinear representation and feature extraction ability of the model. The experimental results show that the model achieves 91.79% precision (P), 92.75% recall (R), and 97.32% mean average precision (mAP)on the test set, which were improved by 1.33%, 2.24%, and 1.73%, respectively, compared with the original model, and the size of the model is only 5.4 MB. This study could meet the performance requirements for citrus fruit identification, which provides technical support for fruit thinning.

7.
Diagnostics (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38472946

RESUMO

Gastrointestinal (GI) tract disorders are a significant public health issue. They are becoming more common and can cause serious health problems and high healthcare costs. Small bowel tumours (SBTs) and colorectal cancer (CRC) are both becoming more prevalent, especially among younger adults. Early detection and removal of polyps (precursors of malignancy) is essential for prevention. Wireless Capsule Endoscopy (WCE) is a procedure that utilises swallowable camera devices that capture images of the GI tract. Because WCE generates a large number of images, automated polyp segmentation is crucial. This paper reviews computer-aided approaches to polyp detection using WCE imagery and evaluates them using a dataset of labelled anomalies and findings. The study focuses on YOLO-V8, an improved deep learning model, for polyp segmentation and finds that it performs better than existing methods, achieving high precision and recall. The present study underscores the potential of automated detection systems in improving GI polyp identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA