Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.924
Filtrar
1.
Genetics ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946641

RESUMO

APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.

2.
J Integr Plant Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953746

RESUMO

Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.

3.
Methods Mol Biol ; 2814: 81-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954198

RESUMO

Uptaking particulate objects and bulk liquid by eucaryotic cells is critical for their growth, survival, and defense. Dictyostelium is a model organism spearheaded to uncover mechanisms behind various types of uptaking activities. Here, we describe assays measuring phagocytosis and macropinocytosis using Dictyostelium discoideum.


Assuntos
Dictyostelium , Fagocitose , Pinocitose , Dictyostelium/fisiologia , Pinocitose/fisiologia
4.
Bioelectrochemistry ; 160: 108756, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959750

RESUMO

The impact of electromagnetic fields on human health has been investigated in recent years using various model organisms, yet the findings remain unclear. In our work, we examined the effect of less-explored, weak electromagnetic fields commonly found in the urban environments we inhabit. We studied different impacts of electromagnetic fields with a frequency of 50 Hz and a combination of 50 Hz and 150 Hz, on both yeasts (Saccharomyces cerevisiae) and human macrophages. We determined growth, survival, and protein composition (SDS-PAGE) (Saccharomyces cerevisiae) and morphology of macrophages (human monocytic cell line). In yeast, the sole observed change after 24 h of exposure was the extension of the exponential growth phase by 17 h. Conversely, macrophages exhibited morphological transformations from the anti-inflammatory to the pro-inflammatory type within just 2 h of exposure to the electromagnetic field. Our results suggest that effects of electromagnetic field largely depend on the model organism. The selection of an appropriate model organism proves essential for the study of the specific impacts of electromagnetic fields. The potential risk associated with the presence of pro-inflammatory M1 macrophages in everyday urban environments primarily arises from the continual promotion of inflammatory reactions within a healthy organism and deserves further investigation.

5.
Food Chem ; 458: 140258, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959800

RESUMO

Improving the freezing resistance of yeast in dough starters is one of the most effective methods to promote the healthy development of frozen dough technology. When the dough starter was composed of yeast, lactic acid bacteria and acetic acid bacteria, the microbial proportion was 10:1:5, and the ratio of wheat flour to corn flour was 1:1. The proline contents of the starters and the survival rates and fermentation capacity of yeast significantly increased compared with those of the starter composed of yeast and wheat flour only (P < 0.05). Laser confocal microscopy observation showed that the cell membrane damage of yeast obviously decreased. Low-field nuclear magnetic resonance method revealed that the water distribution state of starters changed. Adding corn flour and acetic acid bacteria to dough starter in appropriate proportions improves yeast freezing resistance.

6.
Food Chem ; 458: 140256, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959802

RESUMO

This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.

7.
Peptides ; : 171269, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960286

RESUMO

bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.

8.
Biochim Biophys Acta Biomembr ; : 184365, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960299

RESUMO

Membrane contacts sites (MCSs) play important roles in lipid trafficking across cellular compartments and maintain the widespread structural diversity of organelles. We have utilized microsecond long all-atom (AA) molecular dynamics (MD) simulations and enhanced sampling techniques to unravel the MCS structure targeting by yeast oxysterol binding protein (Osh4) in an environment that mimics the interface of membranes with an increased proportion of anionic lipids using CHARMM36m forcefield with additional CUFIX parameters for lipid-protein electrostatic interactions. In a dual-membrane environment, unbiased MD simulations show that Osh4 briefly interacts with both membranes, before aligning itself with a single membrane, adopting a ß-crease-bound conformation similar to observations in a single-membrane scenario. Targeted molecular dynamics simulations followed by microsecond-long AA MD simulations have revealed a distinctive dual-membrane bound state of Osh4 at MCS, wherein the protein interacts with the lower membrane via the ß-crease surface, featuring its PHE-239 residue positioned below the phosphate plane of membrane, while concurrently establishing contact with the opposite membrane through the extended α6-α7 region. Osh4 maintains these dual membrane contacts simultaneously over the course of microsecond-long MD simulations. Moreover, binding energy calculations highlighted the essential roles played by the phenylalanine loop and the α6 helix in dynamically stabilizing dual-membrane bound state of Osh4 at MCS. Our computational findings were corroborated through frequency of contact analysis, showcasing excellent agreement with past experimental cross-linking data. Our computational study reveals a dual-membrane bound conformation of Osh4, providing insights into protein-membrane interactions at membrane contact sites and their relevance to lipid transfer processes.

9.
J Sci Food Agric ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963133

RESUMO

BACKGROUND: Yeast culture (YC) is a product fermented on a specific medium, which is a type of postbiotic of anaerobic solid-state fermentation. Although YC has positive effects on the animal growth and health, it contains a variety of beneficial metabolites as dark matter, which have not been quantified. In the present study, liquid chromatography-tandem mass spectrometry is employed to identify the unknown metabolites. Following their identification, the important chemicals are quantified using HPLC-diode array detection methods. RESULTS: Non-targeted metabolomics studies showed that 670 metabolites in total were identified in YC, of which 23 metabolites significantly increased, including organic acids, amino acids, nucleosides and purines, isoflavones, and other substances. The chemical quantitative analysis showed that the contents of succinic acid, aminobutyric acid, glutamine, purine and daidzein increased by 84.42%, 51.07%, 100%, 68.85% and 4.60%, respectively. CONCLUSION: Therefore, the use of non-targeted metabolomics combined with chemical quantitative analysis to reveal the nutritional and functional substances of YC could help to elucidate the postbiotic mechanism and provide theoretical support for the regulation of the directional accumulation of beneficial metabolites. © 2024 Society of Chemical Industry.

10.
Subcell Biochem ; 104: 101-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963485

RESUMO

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Assuntos
Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Nucleossomos/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Histonas/metabolismo , Histonas/química , Histonas/genética , Microscopia Crioeletrônica/métodos
11.
Yeast ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961653

RESUMO

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.

12.
Crit Rev Food Sci Nutr ; : 1-9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950579

RESUMO

Bioactive peptides from brewer's spent grain (BSG) and brewer's spent yeast (BSY), two by-products of the brewing industry, have great potential as functional food ingredients, dietary supplements or nutraceuticals to reduce the risk of numerous pathological conditions. Nevertheless, the oral administration of these peptides poses great challenges since peptides must undergo gastrointestinal digestion, intestinal absorption and hepatic metabolism, which can affect their bioavailability and, therefore, the expected outcomes. This review provides a comprehensive and critical analysis of the potential impact of the oral route on the bioactivity of BSG/BSY peptides as assessed by in vitro assays and identifies research gaps that require novel approaches/methodologies. The data collected indicate that in addition to the significant influence of gastrointestinal digestion, intestinal absorption and hepatic metabolism also have a major impact on the bioactivity of brewing peptides. The major gap identified was the insufficient evidence regarding hepatic metabolism, which points for the need of employing in vitro assays in this research field to provide such clarification. Thus, to reach the market, the impact of the oral route on the bioactivities of BSG/BSY peptides must be properly studied in vitro to allow adequate/effective administration (dosage/frequency) with a beneficial impact on the population health.

13.
Curr Genet ; 70(1): 9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951203

RESUMO

The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-ß-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-ß-galactopyranoside) as a substrate for ß-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.


This article describes the characterization of the S. schoenii MET17 promoter for regulated gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Reporter , Metionina , Regiões Promotoras Genéticas , Metionina/metabolismo , Metionina/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
14.
Bioresour Technol ; 406: 131062, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964514

RESUMO

Acquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid ß-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.

15.
Data Brief ; 55: 110557, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966666

RESUMO

Whole genome sequencing (WGS) and data concerning identity and safety for Saccharomyces cerevisiae CBS 493.94 are reported. This strain was isolated from a British brewery in 1958 and deposited at the CBS culture collection Westerdijk Fungal Biodiversity Institute under the accession number CBS 493.94. The long-reads sequencing data, obtained via PacBio Sequel, and short-reads data, via Illumina NovaSeq 6000, were deposited at NCBI under accession number PRJNA1044661. The hybrid assembly was made publicly available via Zenodo and NCBI. For strain identification, data from 18S rRNA, ANI dendrogram and Core Genome single nucleotide polymorphism (SNP) Tree showed that the present isolate belongs to the genus Saccharomyces, species cerevisiae. The potential genes of concern, e.g. antimycotic resestance genes, were not detected. This strain is commonly used as a feed additive for animal health improvement and the present data summarise the unambiguous identity and strain's FKS1 gene does not code for any amino acid variants of concern.

16.
Exp Gerontol ; : 112509, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964429

RESUMO

Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1ß, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1ß (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.

17.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965775

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.

18.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965504

RESUMO

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Assuntos
Peróxido de Hidrogênio , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Etanol/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Pressão Osmótica , Catalase/metabolismo , Catalase/genética , Variação Genética
19.
J Anim Sci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970329

RESUMO

Fifty gilts [initial BW 190.7 ± 4.2 kg] were recruited on d 85 of gestation and were used until d 19 of lactation to assess the dose-response of inactivated yeast via hydrolyzation (HY) inclusion on offspring growth and immunoglobulin (Ig) transfer prior to weaning. Gilts were assigned to one of five experimental diets: a control with no HY (HY0) or inclusion of 0.25% (HY0.25), 0.5% (HY0.5), 1.0% (HY1.0) or 1.2% (HY1.2) HY. Gilts were weighed on d 85 and 110 of gestation and d 1 and 19 (weaning) after farrowing. Offspring were weighed on d 1 and 19 of age. On lactation d 1 (approx. 24 h after farrowing), colostrum, gilt plasma, and plasma from two median body weight (BW) piglets were collected and on d 19, plasma from each gilt and two median BW piglets per litter were collected for determination of Ig concentrations. Contrast statements were used to assess linear, quadratic cubic, and quartic effects of HY inclusion. The inclusion of HY had minimal effects on gilt BW or litter characteristics at birth (total number born and born alive, piglet birth weight). Lactation average daily feed intake of the gilts tended to increase then decrease with increasing HY inclusion (quadratic; P = 0.085). Piglet pre-weaning average daily gain (linear, quadratic, and quartic; P < 0.05) and BW at weaning (quadratic and quartic; P < 0.05) increased then decreased with increasing HY inclusion. On lactation d 1, colostrum and gilt plasma Ig concentrations were not affected by dietary treatment (P > 0.10) but piglet IgA and IgM decreased then increased with HY inclusion level (cubic; P < 0.05). On lactation d 19, piglet plasma IgG tended to increase with HY inclusion (linear; P = 0.099). In summary, increasing HY inclusion in late gestating and lactating gilt diets improved immune transfer in the first 24 h after birth and piglet pre-weaning growth rates and body weight at weaning. Therefore, maternal feeding of HY could be used as a strategy to improve offspring immunocompetence and BW at weaning, with possible carry-over benefits for the post-weaning phase.

20.
Appl Environ Microbiol ; : e0039724, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975758

RESUMO

Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...