Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(12): 9175-9197, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37356036

RESUMO

Mine tailings are one of the primary contaminant sources of heavy metals and metalloids in the soil. Besides increasing the concentration of potentially toxic elements (PTEs), tailings may modify the edaphic conditions and decrease the buffer capacity of impacted soils. The influence of tailings may reach distances far from the impoundments depending on the transport path and the specific transport mean: air, rain (runoff and infiltration), or acid mine drainage. In this study, soil samples from various horizons were collected in trial pits along a transect, at different distances from sulfide tailings. Soil analysis included texture, organic matter, alkalinity, porous space, carbonates, pH, electrical conductivity, real density, apparent density, total sulfur, main mineralogy, and total concentrations of As, Cd, Pb, Fe, and Zn. Graphical and statistical interpretation of the results showed that real density and porous space are the leading indicators of the tailings dispersion and accumulation and that pH is not a significant parameter (all values were above the neutrality) due to the limestone abundance in the area. However, Zn and Cd concentrations had an inverse relation with pH. Differences in the concentrations of PTEs between the superficial and deep layers that increased toward the tailings were also observed. Gypsum was only present in the closest samples to the tailings and may also be an indicator of tailings' influence on soils. This study allowed us to identify general edaphic parameters as a first and quick means to determine the tailings contamination of soils.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Cádmio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise
2.
Environ Geochem Health ; 43(6): 2231-2242, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33090370

RESUMO

The dispersion of mine tailings affects ecosystems due to their high content of potentially toxic elements. Environmental risk increases when the soil impacted by tailings is used for agriculture; this use may result in health impacts. This study analyzes the feasibility of remediating a calcareous soil (used for maize cultivation) polluted with lead in the semiarid zone of Zimapán, México, by using EDTA as an extractant. Total geoavailable and bioaccessible concentrations in the gastric and intestinal phases were determined to evaluate lead availability and health risk. The soil was then washed with EDTA, and the geochemical fractionation (interchangeable, carbonates, Fe/Mn oxy-hydroxides, organic matter-sulfides, and residual) and impact on the mesophile bacteria and fungi/yeast populations were analyzed. The results showed total Pb concentrations up to 647 ± 3.50 mg/kg, a 46% bioaccessible fraction (297 ± 9.90 mg/kg) in the gastric phase and a 12.2% (80 ± 5 mg/kg) bioaccessible fraction in the intestinal phase, indicating a health and environmental risk. Meanwhile, the geochemical fractionation before washing showed a Pb fraction mainly consisting of Fe/Mn oxy-hydroxides (69.6%); this reducible fraction may progressively increase its bioaccessibility. Geochemical fractionation performed in the washed soil showed differences from that determined before the treatment; however, the iron and manganese fraction, at 42.4%, accounted for most of the Pb. The soil microbiology was also modified by EDTA, with an increase in aerobic bacteria and a decrease in fungi/yeast populations. Although 44% total lead removal was achieved, corresponding to a final concentration of 363.50 ± 43.50 mg/kg (below national and USEPA standards), washing with EDTA increased the soluble and interchangeable lead concentrations. Statistical analysis indicated a significant effect (p < 0.05) of EDTA on the soil's geochemical fractionation of lead.


Assuntos
Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Solo/química , Agricultura , Disponibilidade Biológica , Ferro/análise , Ferro/química , Chumbo/análise , Chumbo/farmacocinética , Manganês/análise , Manganês/química , México , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética
3.
Environ Geochem Health ; 42(8): 2361-2375, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31583503

RESUMO

Mining is one of the main economic activities in Mexico, and Hidalgo State is one of the main areas; however, this activity produces wastes, such as mine tailings, that are disposed in deposits and may be dispersed on the soils (e.g., agricultural soils). In this study, the concentrations of As and heavy metals in maize plants cultivated in a greenhouse in two soils influenced by tailings were evaluated. Plants were grown for 165 days in the soils (one of them more polluted due to a closer distance to the tailings) and one control soil close to the study zone. Plants' growth was evaluated, and after harvesting, they were divided in six parts: root, stalk, plant leaves, cob sheath, corncob and grains. Plants showed depressed development: small height, slow growth and physiological cob immaturity. Assimilation of As and heavy metals by plants was influenced by the concentration of the contaminants but also by the availability of nutrients. Important concentrations of the metals were recorded in the harvestable parts (grain, stalk and cob sheath). The order of accumulation was Zn > Fe > Pb > As > Cd. Cadmium was not detected in grains, but a maximum concentration of As at 1.02 mg/kg and Pb at 3.9 mg/kg was measured in the dry grain. These As and Pb concentrations do not comply with CODEX Alimentarius standards for maize, which states that the cob must be free of heavy metals. In addition, Pb also exceeds the limits established by the Mexican NOM-247-SSA1-2008 regulation.


Assuntos
Metais Pesados/farmacocinética , Mineração , Poluentes do Solo/farmacocinética , Zea mays/metabolismo , Agricultura , Arsênio/análise , Arsênio/farmacocinética , Disponibilidade Biológica , Metais Pesados/análise , México , Sementes/química , Solo/química , Poluentes do Solo/análise , Distribuição Tecidual , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA