Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39064339

RESUMO

The ZnMn2O4/V2CTx composites with a lamellar rod-like bond structure were successfully synthesized through high-temperature calcination at 300 °C, aiming to enhance the Li storage properties of spinel-type ZnMn2O4 anode materials for lithium-ion batteries. Moreover, even though the electrode of the composites obtained at 300 °C had a nominal specific capacity of 100 mAh g-1, it exhibited an impressive specific discharge capacity of 163 mAh g-1 after undergoing 100 cycles. This represents an approximate increase of 64% compared to that observed in the pure ZnMn2O4 electrode (99.5 mAh g-1). The remarkable performance of the composite can be credited to the collaborative impact between ZnMn2O4 and V2CTx, leading to a substantial improvement in its lithium ion storage capacity. Therefore, this study offers valuable insights into developing cost-effective, safe, and easily prepared anode materials.

2.
Int J Biol Macromol ; 271(Pt 2): 132689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806084

RESUMO

This work involves preparing zinc manganite nanoparticles (ZnMn2O4 NPs) using the Sol-gel method. Polymer nanocomposites of polyvinyl alcohol (PVA)/Sodium alginate (NaAlg)- ZnMn2O4 NPs were created using the solution casting technique. The polymer nanocomposites films were made with varying weight percentages of ZnMn2O4 nanoparticles. With the addition of nanofiller, the reduced direct and indirect energy band gap values and increased Urbach energy values were discovered in the UV-Vis data. XRD data showed a reduction in crystallinity degree with dopant. ZnMn2O4 NPs had a strong interaction with PVA/NaAlg blend, as confirmed by FTIR. The addition of ZnMn2O4 NPs led to improved thermal stability of the polymer nanocomposites films. Additionally, the nanocomposites films' mechanical characteristics were examined. The loading of ZnMn2O4 nanoparticles has been associated with an increasing trend in the mechanical properties of the nanocomposites, including its toughness, Young's modulus, Tensile strength (Ts), and elongation. The antibacterial activity of the nanocomposites against fungus and bacteria was studied. Additionally, PVA/NaAlg-ZnMn2O4 nanocomposites films had good antibacterial characteristics against environmental microorganisms such as Gram-positive (G+) S. aureus and Gram-negative(G-) E. coli bacteria as well as fungi C. albicans and A. niger. It was observed that the biodegradability of the nanocomposite films was lower compared to the pure PVA/NaAlg film. Compared to pure film, the water solubility was decreased upon the addition of ZnMn2O4 NPs. After ZnMn2O4 was added to the pure blend, the WVTR decreased. The produced polymer nanocomposites films appear to be a promising material for food packing, according to these results.


Assuntos
Alginatos , Antibacterianos , Embalagem de Alimentos , Nanocompostos , Álcool de Polivinil , Álcool de Polivinil/química , Nanocompostos/química , Embalagem de Alimentos/métodos , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Resistência à Tração , Fenômenos Mecânicos , Fenômenos Ópticos , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Compostos de Zinco/química
3.
Materials (Basel) ; 17(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399135

RESUMO

This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was uniformly synthesized on a Ni foam surface with the hierarchical structure of microparticles and nanosheets, and the uniform deposition of N-GQDs on a MC/ZM surface was observed. The incorporation of N-GQDs with MC/ZM provides good conductivity, charge transfer, and electrolyte diffusion for a better electrochemical performance. The N/MC/ZM composite electrode delivered a high specific capacitance of 960.6 F·g-1 at 1 A·g-1, low internal resistance, and remarkable cycling stability over 10,000 charge-discharge cycles. Additionally, an all-flexible solid-state asymmetric supercapacitor (ASC) device was fabricated using the N/MC/ZM composite electrode. The fabricated ASC device produced a maximum energy density of 58.4 Wh·kg-1 at a power density of 800 W·kg-1 and showed a stable capacitive performance while being bent, with good mechanical stability. These results provide a promising and effective strategy for developing supercapacitor electrodes with a high areal capacitance and high energy density.

4.
Water Environ Res ; 96(2): e10984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298030

RESUMO

In this study, a highly efficient peroxymonosulfate (PMS) activator, ZnO/ZnMn2 O4 , was synthesized using a simple one-step hydrothermal method. The resulting bimetallic oxide catalyst demonstrated a homogenous and high-purity composition, showcasing synergistic catalytic activity in activating PMS for degrading 2, 4-dichlorophenol (2, 4-DCP) in aqueous solution. This catalytic performance surpassed that of individual ZnO, Mn2 O3 , and ZnMn2 O4 metal materials. Under the optimized conditions, the removal efficiency of 2, 4-DCP reached approximately 86% within 60 min, and the catalytic ability remained almost constant even after four cycles of recycling. The developed degradation system proved effective in degrading other azo-dye pollutants. Certain inorganic anions such as HPO4 - , HCO3 - , and NO3 - significantly inhibited the degradation of 2, 4-DCP, while Cl- and SO4 2- did not exhibit such interference. Results from electrochemical experiments indicated that the electron transfer ability of ZnO/ZnMn2 O4 surpassed that of individual metals, and electron transfer occurred between ZnO/ZnMn2 O4 and the oxidant. The primary active radicals responsible for degrading 2, 4-DCP were identified as SO4 •- , OH• and O2 •- , generated through the oxidation and reduction of PMS catalyzed by Zn (II) and Mn (III). Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the fresh and used catalysts revealed that the exceptional electron transfer ability of ZnO facilitated the valence transfer of Mn (III) and the transfer of electrons to the catalyst's oxygen surface, thus enhancing the catalytic efficiency. The analysis of radicals and intermediates indicates that the two main pathways for degrading 2, 4-DCP involve hydroxylation and radical attack on its aromatic ring. PRACTITIONER POINTS: A bimetallic ZnO/ZnMn2 O4 catalyst was synthesized and characterized. ZnO/ZnMn2 O4 can synergistically activate PMS to degrade 2, 4-DCP compared with single metal oxide. Three primary active radicals, O2 •- , • OH, and SO4 •- , were generated to promote the degradation. ZnO promoted electron transfer among the three species of Mn to facilitate oxidizing pollutants. Hydroxylation and radical attack on the aromatic ring of 2, 4-DCP are the two degradation pathways.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Peróxidos/química , Óxidos , Fenóis , Oxigênio , Catálise
5.
Nanomaterials (Basel) ; 13(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38063713

RESUMO

Transparent ZnMn2O4 thin films on indium tin oxide (ITO) were prepared through spray pyrolysis and implemented as electrodes in symmetric supercapacitors (SSCs). A specific capacitance value of 752 F g-1 at 0.5 A g-1 and a 70% retention over 3000 galvanostatic charge-discharge (GCD) cycles were reached with a 1.0 M Na2SO4 electrolyte in a three-electrode electrochemical cell. Analysis of the cycled electrodes with 1.0 M Na2SO4 revealed a local loss of electrode material; this loss increases when electrodes are used in SCCs. To avoid this drawback, solid polyvinylpyrrolidone-LiClO4 (PVP-LiClO4) and quasi-solid polyvinylpyrrolidone-ionic liquid (PVP-ionic liquid) electrolytes were tested in SSCs as substitutes for aqueous Na2SO4. An improvement in capacitance retention without a loss of electrode material was observed for the PVP-ionic liquid and PVP-LiClO4 electrolytes. With these non-aqueous electrolytes, the tetragonal structure of the ZnMn2O4 spinel was maintained throughout the cyclic voltammetry (CV) cycles, although changes occurred in the stoichiometry from ZnMn2O4 to Mn-rich Zn1-xMn3-xO4. In the case of the electrolyte 1.0 M Na2SO4, the loss of Zn2+ led to the formation of MnO2 via Zn1-xM3-xO4. The location of the three SCCs in the Ragone plot shows supercapacitor behavior. The electrochemical results prove that the pseudocapacitance is the major contributor to the electrode capacitance, and the SCCs can therefore be considered as pseudocapacitors.

6.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298934

RESUMO

Zinc-ion batteries (ZIBs) have recently attracted great interest and are regarded as a promising energy storage device due to their low cost, environmental friendliness, and superior safety. However, the development of suitable Zn-ion intercalation cathode materials remains a great challenge, resulting in unsatisfactory ZIBs that cannot meet commercial demands. Considering that spinel-type LiMn2O4 has been shown to be a successful Li intercalation host, spinel-like ZnMn2O4 (ZMO) is expected to be a good candidate for ZIBs cathodes. This paper first introduces the zinc storage mechanism of ZMO and then reviews the promotion of research progress in improving the interlayer spacing, structural stability, and diffusivity of ZMO, including the introduction of different intercalated ions, introduction of defects, and design of different morphologies and in combination with other materials. The development status and future research directions of ZMO-based ZIBs characterization and analysis techniques are summarized.


Assuntos
Tecnologia , Zinco , Eletrodos , Íons
7.
J Colloid Interface Sci ; 649: 703-712, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37385035

RESUMO

Spinel ZnMn2O4 with a three-dimensional channel structure is one of the important cathode materials for aqueous zinc ions batteries (AZIBs). However, like other manganese-based materials, spinel ZnMn2O4 also has problems such as poor conductivity, slow reaction kinetics and structural instability under long cycles. Herein, ZnMn2O4 mesoporous hollow microspheres with metal ion doping were prepared by a simple spray pyrolysis method and applied to the cathode of aqueous zinc ion battery. Cation doping not only introduces defects, changes the electronic structure of the material, improves its conductivity, structural stability, and reaction kinetics, but also weakens the dissolution of Mn2+. The optimized 0.1 % Fe-doped ZnMn2O4 (0.1% Fe-ZnMn2O4) has a capacity of 186.8 mAh g-1 after 250 charge-discharge cycles at 0.5 A g-1 and the discharge specific capacity reaches 121.5 mAh g-1 after 1200 long cycles at 1.0 A g-1. The theoretical calculation results show that doping causes the change of electronic state structure, accelerates the electron transfer rate, and improves the electrochemical performance and stability of the material.

8.
Chempluschem ; 88(3): e202300044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36894507

RESUMO

Zinc corrosion and dendrite formation are the main issues which impede the performance of aqueous zinc ion batteries (ZIBs) after certain times. In this work, we systematically investigated the effects of three different valence ions (e. g., Na+ , Mg2+ , Al3+ ) as electrolyte additives on the suppression of zinc corrosion and the inhibition of dendrite growth. By combining experiments and theoretical calculations, it has been found that the existence of Na+ ions effectively suppressing the zinc dendrite growth because Na+ possessess high adsorption energy approximately -0.39 eV. Moreover, Na+ ions could lengthen the zinc dendrite formation duration up to 500 h. On the other hand, the PANI/ZMO cathode materials showed the small band gap approximately 0.097 eV, signifying that the PANI/ZMO possessed the semiconductor characteristics. Furthermore, an assembled Zn//PANI/ZMO/GNP full battery using Na+ ions as electrolyte additive displayed capacity retention of 90.2 % after 500 cycles at 0.2 A g-1 , whereas the capacity retention of the control battery using pure ZnSO4 electrolyte was only 58.2 %. This work could provide a reference for the selection of electrolyte additives in future batteries.

9.
J Colloid Interface Sci ; 641: 386-395, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940595

RESUMO

Spinel bimetallic transition metal oxide anode such as ZnMn2O4, has drawn increasing interest due to attractive bimetal interaction and high theoretical capacity. While it suffers from huge volume expansion and poor ionic/electronic conductivity. Nanosizing and carbon modification can alleviate these issues, while the optimal particle size within host is unclear yet. We here propose an in-situ confinement growth strategy to fabricate pomegranate-structured ZnMn2O4 nanocomposite with calculated optimal particle size in mesoporous carbon host. Theoretical calculations reveal favorable interatomic interactions between the metal atoms. By the synergistic effects of structural merits and bimetal interaction, the optimal ZnMn2O4 composite achieves greatly improved cycling stability (811 mAh g-1 at 0.2 A g-1 after 100 cycles), which can maintain its structural integrity upon cycling. X-ray absorption spectroscopy analysis further confirms delithiated Mn species (Mn2O3 but little MnO). Briefly, this strategy brings new opportunity to ZnMn2O4 anode, which could be adopted to other conversion/alloying-type electrodes.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770472

RESUMO

Spinel ZnMn2O4 is considered a promising anode material for high-capacity Li-ion batteries due to their higher theoretical capacity than commercial graphite anode. However, the insufficient cycling and rate properties seriously limit its practical application. In this work, porous ZnMn2O4 hollow micro-rods (ZMO HMRs) are synthesized by a facile co-precipitation method coupled with annealing treatment. On the basis of electrochemical analyses, the as-obtained samples are first characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy techniques. The influences of different polyethylene glycol 400 (PEG 400) additions on the formation of the hollow rod structure are also discussed. The abundant multi-level pore structure and hollow feature of ZMO HMRs effectively alleviate the volume expansion issue, rendering abundant electroactive sites and thereby guaranteeing convenient Li+ diffusion. Thanks to these striking merits, the ZMO HMRs anode exhibits excellent electrochemical lithium storage performance with a reversible specific capacity of 761 mAh g-1 at a current density of 0.1 A g-1, and a long-cycle specific capacity of 529 mAh g-1 after 1000 cycles at 2.0 A g-1 and keep a remarkable rate capability. In addition, the assembled ZMO HMRs-based full cells deliver an excellent rate capacity, and when the current density returns to 0.05 A g-1, the specific capacity can still reach 105 mAh g-1 and remains at 101 mAh g-1 after 70 cycles, maintaining a material-level energy density of approximately 273 Wh kg-1. More significantly, such striking electrochemical performance highlights that porous ZMO HMRs could be a promising anode candidate material for LIBs.

11.
ACS Appl Mater Interfaces ; 14(50): 55528-55537, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36510356

RESUMO

Elemental doping and surface modification are commonly used strategies for improving the electrochemical performance of LiMn2O4, such as the rated capacity and cycling stability. In this study, in situ formed core-shell LiZnxMn2-xO4@ZnMn2O4 cathodes are prepared by tuning the Zn-doping content. Through comprehensive microstructural analyses by the spherical aberration-corrected scanning transmission microscopy (Cs-STEM) technique, we shed light on the correlation between the microstructural configuration and the electrochemical performance of Zn-doped LiMn2O4. We demonstrate that part of Zn2+ ions dope into the spinel to form LiZnxMn2-xO4 in bulk and other Zn2+ ions occupy the 8a sites of the spinel to form the ZnMn2O4 shell on the outermost surface. This in situ formed core-shell LiZnxMn2-xO4@ZnMn2O4 contributes to better structural stabilization, presenting a superior capacity retention ratio of 95.8% after 700 cycles at 5 C at 25 °C for the optimized sample (LiZn0.02Mn1.98O4), with an initial value of 80 mAh g-1. Our investigations not only provide an effective way toward high-performance LIBs but also shed light on the fundamental interplay between the microstructural configuration and the electrochemical performance of Zn-doped spinel LiMn2O4.

12.
ACS Appl Mater Interfaces ; 14(33): 37652-37666, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960813

RESUMO

In recent years, transition metal oxides have been considered as the most promising anode materials due to their high theoretical capacity, low price, and abundant natural reserves. Among them, zinc manganate is used as an electrode material for anodes, whose application is mostly hindered due to its poor ionic/electronic conductivity. In this work, a series of ZnMn2O4 (ZMO) are synthesized by a hydrothermal technique coordinated with a metal-organic framework-based high-temperature calcination process for their application as an anode in lithium-ion batteries (LIBs). Meanwhile, this study systematically explores the influence of carbon doping and the types of organic ligands and oxygen vacancies on the electrochemical properties of the synthesized ZMO. Density functional theory (DFT) calculations and experimental investigations reveal that the introduction of carbon and oxygen vacancies can enhance electronic conductivity, more active sites and faster Li+ adsorption, resulting in better electrochemical performances. As expected, all ZMOs with carbon doping (PMA-ZMO, MI-ZMO, and BDC-ZMO) derived from 1,2,4,5-benzenetetracarboxylic acid, 2-methylimidazole, and 1,4-dicarboxybenzene achieve outstanding electrochemical performance. Meanwhile, the introduction of oxygen vacancies can enhance the electronic conductivity and can significantly reduce the activation energy of Li+ transport, thereby accelerating the Li+ diffusion kinetics in the lithiation/delithiation process. Furthermore, an optimal ZMO anode material synthesized by 2-methylimidazole delivers a high reversible capacity of 1174.7 mA h g-1 after 300 cycles at 0.1 A g-1 and 600 mA h g-1 at 0.5 A g-1 after 300 cycles. After high-rate charge and discharge cycles, the specific capacity rapidly recovers to a value greater than the initial value, which proves the unusual activation and thereby an excellent rate property of the electrode. Hence, we conclude that ZMO provides potential application prospects as an anode electrode material for LIBs.

13.
Angew Chem Int Ed Engl ; 61(12): e202115877, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-34989074

RESUMO

Manganese oxides are promising cathode materials for aqueous zinc-ion batteries (ZIBs) due to their high energy density and low cost. However, in their discharging processes, the Jahn-Teller effect and Mn3+ disproportionation often lead to irreversible structural transformation and Mn2+ dissolution, deteriorating the cycling stability of ZIBs. Herein, ZnMn2 O4 quantum dots (ZMO QDs) were introduced into a porous carbon framework by in-situ electrochemically inducing Mn-MIL-100-derived Mn3 O4 quantum dots and the carbon composite. In such ZMO QDs and carbon composite, the quantum dot structure endows ZnMn2 O4 with a shorter ion diffusion route and more active sites for Zn2+ . The conductive carbon framework is beneficial to the fast transport of electrons. Furthermore, at the interface between the ZMO QDs and the carbon matrix, the Mn-O-C bonds are formed. They can effectively suppress the Jahn-Teller effect and manganese dissolution of discharge products. Therefore, Zn/ZMO QD@C batteries display remarkably enhanced electrochemical performance.

14.
Angew Chem Int Ed Engl ; 60(49): 25793-25798, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676649

RESUMO

Mn-based oxides have sparked extensive scientific interest for aqueous Zn-ion batteries due to the rich abundance, plentiful oxidation states, and high output voltage. However, the further development of Mn-based oxides is severely hindered by the rapid capacity decay during cycling. Herein, a two-step metal-organic framework (MOF)-engaged templating strategy has been developed to rationally synthesize heterostructured Mn2 O3 -ZnMn2 O4 hollow octahedrons (MO-ZMO HOs) for stable zinc ion storage. The distinctive composition and hollow heterostructure endow MO-ZMO HOs with abundant active sites, enhanced electric conductivity, and superior structural stability. By virtue of these advantages, the MO-ZMO HOs electrode shows high reversible capacity, impressive rate performance, and outstanding electrochemical stability. Furthermore, ex situ characterizations reveal that the charge storage of MO-ZMO HOs mainly originates from the highly reversible Zn2+ insertion/extraction reactions.

15.
ACS Appl Mater Interfaces ; 13(44): 52542-52548, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714627

RESUMO

Heterostructures show great potential in energy storage due to their multipurpose structures and function. Recently, two-dimensional (2D) graphene has been widely regarded as an excellent substrate for active materials due to its large specific surface area and superior electrical conductivity. However, it is prone to self-aggregation during charging and discharging, which limits its electrochemical performance. To address the graphene agglomeration problem, we interspersed polypyrrole carbon nanotubes between the graphene cavities and designed three-dimensional (3D)-heterostructures of ZnMn2O4@rGO-polypyrrole carbon nanotubes (ZMO@G-PNTs), which demonstrated a high rate and cyclic stability in lithium-ion capacitors (LICs). Furthermore, the 3D porous structure provided more surface capacity contribution than 2D graphene, ultimately resulting in a better stability (333 mAh g-1 after 1000 cycles at 1 A g-1) and high rate capacity (208 mAh g-1 at 5 A g-1). Also, the mechanism of performance difference between ZMO@G-PNTs and ZMO@G was investigated in detail. Moreover, LICs built from ZMO@G-PNTs as an anode and activated carbon as a cathode showed an energy density of 149.3 Wh kg-1 and a power density of 15 kW kg-1 and cycling stability with a capacity retention of 61.5% after 9000 cycles.

16.
ACS Appl Mater Interfaces ; 13(20): 23822-23832, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974402

RESUMO

Aqueous zinc-ion batteries are considered promising next-generation systems for large-scale energy storage due to low cost, environmental friendliness, and high reversibility of the Zn anode. However, the interfacial charge-transfer resistance for the insertion of divalent Zn2+ into cathode materials is normally high, which limits the kinetics of Zn2+ transfer at the cathode/electrolyte interface. This study reveals the presence of rich structural water in spinel ZnMn2O4 (ZnMn2O4·0.94H2O, denoted as ZMO), synthesized by a scalable and low-temperature process, significantly overcoming the great interfacial charge-transfer resistance. ZMO exhibits excellent electrochemical performance toward Zn storage, that is, high capacity (230 and 101 mA h g-1 at 0.5 and 8 A g-1), high specific energy/specific power (329 W h kg-1/706 W kg-1 and 134 W h kg-1/11,160 W kg-1), and stable cycle retention (75% after 2000 cycles at 4 A g-1) can be achieved. On the contrary, the controlled sample ZMO-450 with deficient structural water, prepared by post-heat treatment of ZMO at 450 °C, demonstrates limited discharge capacity (45 and 15 mA h g-1 at 0.5 and 8 A g-1). As examined by electrochemical impedance spectroscopy, rich structural water in ZMO effectively reduces the activation energy barrier upon Zn2+ insertion, rendering fast interfacial kinetics for Zn storage. Benefiting from rich structural water in ZMO, the involvement of Zn2+ during the charge/discharge process exhibits good reversibility, as characterized by X-ray diffraction and X-ray photoelectron spectroscopy.

17.
Chemosphere ; 278: 130404, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33823354

RESUMO

A special catalytic system was obtained by using ZnMn2O4 (ZMO) materials to activate Na2S2O8 and catalytically degrade organic dye orange II under visible light irradiation. The ZMO nanoparticles were prepared by a simple one-step method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). In this study, the ZMO/Na2S2O8 system was used to degrade orange II, and the degradation rate reached 97.44% in 60 min. ZMO catalysts could be recycled for at least five times, and its degradation rate was only decreased by 1.84%. The free radicals produced during the degradation of orange II were studied by classical quenching experiments, and the different types of free radicals produced in the system were further confirmed by electron paramagnetic resonance (EPR) spectroscopy. The catalytic degradation of orange II in this system was mainly caused by the production of superoxide, sulfate and hydroxyl radicals, which achieved high degradation.


Assuntos
Luz , Sulfatos , Compostos Azo , Benzenossulfonatos , Catálise , Compostos de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Adv Sci (Weinh) ; 8(4): 2002636, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643793

RESUMO

Manganese (Mn)-based cathode materials have garnered huge research interest for rechargeable aqueous zinc-ion batteries (AZIBs) due to the abundance and low cost of manganese and the plentiful advantages of manganese oxides including their different structures, wide range of phases, and various stoichiometries. A novel in situ generated Mn-deficient ZnMn2O4@C (Mn-d-ZMO@C) nanoarchitecture cathode material from self-assembly of ZnO-MnO@C for rechargeable AZIBs is reported. Analytical techniques confirm the porous and crystalline structure of ZnO-MnO@C and the in situ growth of Mn deficient ZnMn2O4@C. The Zn/Mn-d-ZMO@C cell displays a promising capacity of 194 mAh g-1 at a current density of 100 mA g-1 with 84% of capacity retained after 2000 cycles (at 3000 mA g-1 rate). The improved performance of this cathode originates from in situ orientation, porosity, and carbon coating. Additionally, first-principles calculations confirm the high electronic conductivity of Mn-d-ZMO@C cathode. Importantly, a good capacity retention (86%) is obtained with a year-old cell (after 150 cycles) at 100 mA g-1 current density. This study, therefore, indicates that the in situ grown Mn-d-ZMO@C nanoarchitecture cathode is a promising material to prepare a durable AZIB.

19.
J Colloid Interface Sci ; 585: 138-147, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33279696

RESUMO

Hollow electrode materials with structural advantages of large contact interface and sufficient cavity structures are significant for electrochemical energy storage. Herein, ultra-long one-dimensional zinc-manganese oxide (ZnMn2O4) hollow nanofibers were successfully prepared by electrospinning at an appropriate temperature (500 °C). The optimal electrode of ZnMn2O4 exhibited a larger specific capacitance (1026 F g-1) as compared to ZnMn2O4 powder (125 F g-1) at a current density of 2 A g-1 in three-electrode configuration. Moreover, the optimal electrode of the ZnMn2O4 hollow nanofibers also possessed long-term cycling stability with a slight upward capacitance (100.8%) after 5000 cycles. Their higher specific capacitance and the outstanding cycle stability may be attributed to the unique 1D hollow nanostructure, which enhanced the charge transfer and improved the diffusion of the electrolyte ions at the surface. Thus, this work designed a high-performance electrode with unique hollow nanostructure that can be applied to the field of energy storage.

20.
ACS Appl Mater Interfaces ; 12(3): 3430-3437, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877016

RESUMO

Mixed transition-metal oxides have witnessed increasing attention in catalysts and electrocatalysts. Herein, reduced graphene oxide-wrapped ZnMn2O4 microspheres (ZnMn2O4@rGO) were facilely synthesized through the solvothermal technique. The microstructure and morphology of ZnMn2O4@rGO microspheres were analyzed under Raman, X-ray photoelectron, X-ray diffraction, and energy-dispersive spectroscopies and scanning electron microscopy. The synthesized ZnMn2O4@rGO was employed as an excellent electrocatalyst for the reduction of hydrogen peroxide (H2O2). The ZnMn2O4@rGO-modified glassy carbon electrode (ZnMn2O4@rGO/GCE) exhibited a linear detection to H2O2 in a wide concentration range of 0.03-6000 µM with a detection limit of 0.012 µM. The biosensor was evaluated to determine H2O2 secreted by human breast cancer cells (MCF-7), indicating its promising applications in physiology and diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Neoplasias da Mama/metabolismo , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/análise , Técnicas Biossensoriais/instrumentação , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas/instrumentação , Eletrodos , Feminino , Grafite/química , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Microesferas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA