RESUMO
Evaluation of anaerobic contribution is important under swimming settings (training and modification through ages), therefore, it is expected to change during maturation. The accumulated oxygen deficit (AOD) method can be used to determine the contribution of nonoxidative energy during swimming; however, it requires several days of evaluation. An alternative method to estimate anaerobic contribution evaluation (ACALT), which can also be evaluated without snorkel (i.e., free-swimming, ACFS), has been proposed; however, these methods have never been compared. Thus, this study (i) analyzed the effect of maturation stage on ACFS during maximal 400 m swimming (Part I), and (ii) compared AOD with ACALT and ACFS, determined in a maximal 400 m effort (Part II). In Part I, 34 swimmers were divided into three groups, according to maturation stages (early-pubertal, middle-pubertal, and pubertal), and subjected to a maximal 400 m free-swimming to determine ACFS. In Part II, six swimmers were subjected to one 400 m maximal effort, and four submaximal constant efforts. The AOD was determined by the difference between the estimated demand and accumulated oxygen during the entire effort. The ACALT and ACFS (for Part I as well) was assumed as the sum of lactic and alactic anaerobic contributions. ACFS was higher in pubertal (3.8 ± 1.1 L) than early (2.1 ± 0.9 L) and middle pubertal group (2.4 ± 1.1 L). No difference was observed among absolute AOD (3.2 ± 1.3 L), ACALT (3.2 ± 1.5 L), and ACFS (4.0 ± 0.9 L) (F = 3.6; p = 0.06). Relative AOD (51.8 ± 12.2 mL·kg-1), ACALT (50.5 ± 14.3 mL·kg-1), and ACFS (65.2 ± 8.8 mL·kg-1) presented main effect (F = 4.49; p = 0.04), without posthoc difference. The bias of AOD vs. ACALT was 0.04 L, and AOD vs. ACFS was -0.74 L. The limits of agreement between AOD and ACALT were +0.9 L and -0.8 L, and between AOD and ACFS were +0.7 L and -2.7 L. It can be concluded that ACFS determination is a feasible tool to determine anaerobic contribution in young swimmers, and it changes during maturation stages. Also, ACFS might be useful to measure anaerobic contribution in swimmers, especially because it allows greater speeds.
RESUMO
BACKGROUND: Investigations of ß-alanine supplementation shows effects on metabolic (aerobic and anaerobic) participation and performance on swimming by a possible blood acidosis buffering. Considering this background, the objective of the present study was to analyze the effects of ß-alanine supplementation on metabolic contribution and performance during 400-m swim. METHODS: Thirteen competitive swimmers underwent a 6-week, double-blind placebo-controlled study, ingesting 4.8 g.day- 1 of ß-alanine or placebo. Before and after the supplementation period, the total anaerobic contribution (TAn) and 30-s all-out tethered swimming effort (30TS) were assessed. Anaerobic alactic (AnAl) and lactic energy (AnLa) was assumed as the fast component of excess post-exercise oxygen consumption and net blood lactate accumulation during exercise (∆[La-]), respectively. Aerobic contribution (Aer) was determined by the difference between total energy demand and TAn. In addition to conventional statistical analysis (Repeated measures ANOVA; p > 0.05), a Bayesian repeated measures ANOVA was used to evidence the effect probability (BFincl). RESULTS: No differences and effects were found between groups, indicating no supplementation effects. Repeated measures ANOVA, with confirmation of effect, was indicate reduce in ∆Lactate (p: 0.001; BFincl: 25.02); absolute AnLa (p: 0.002; BFincl: 12.61), fatigue index (p > 0.001; BFincl: 63.25) and total anaerobic participation (p: 0.008; BFincl: 4.89). CONCLUSIONS: Thus, the results demonstrated that all changes presented were evidenced as a result of exposure to the training period and ß-alanine supplementation doesn't affect metabolic contribution and performance during 400-m freestyle.
Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Ácido Láctico/sangue , Natação/fisiologia , beta-Alanina/administração & dosagem , Adolescente , Adulto , Cápsulas , Método Duplo-Cego , Feminino , Humanos , Masculino , Adulto JovemRESUMO
The purpose of this study was to investigate the use of a single 3-min all-out maximal effort to estimate anaerobic capacity (AC) through the lactate and excess post-exercise oxygen consumption (EPOC) response methods (AC[La-]+EPOCfast) on a cycle ergometer. Eleven physically active men (age = 28.1 ± 4.0â yrs, height = 175.1 ± 4.2â cm, body mass = 74.8 ± 11.9â kg and â©O2max = 40.7 ± 7.3â mLâ kg-1â min-1), participated in the study and performed: i) five submaximal efforts, ii) a supramaximal effort at 115% of intensity of â©O2max, and iii) a 3-min all-out maximal effort. Anaerobic capacity was estimated using the supramaximal effort through conventional maximal accumulated oxygen deficit (MAOD) and also through the sum of oxygen equivalents from the glycolytic (fast component of excess post-exercise oxygen consumption) and phosphagen pathways (blood lactate accumulation) (AC[La-]+EPOCfast), while during the 3-min all-out maximal effort the anaerobic capacity was estimated using the AC[La-]+EPOCfast procedure. There were no significant differences between the three methods (p > 0.05). Additionally, the anaerobic capacity estimated during the 3-min all-out effort was significantly correlated with the MAOD (r = 0.74; p = 0.009) and AC[La-]+EPOCfast methods (r = 0.65; p = 0.029). Therefore, it is possible to conclude that the 3-min all-out effort is valid to estimate anaerobic capacity in physically active men during a single cycle ergometer effort.
Assuntos
Limiar Anaeróbio , Ergometria/normas , Ácido Láctico/sangue , Consumo de Oxigênio , Adulto , Teste de Esforço , Glicólise , Humanos , MasculinoRESUMO
Our aims were to compare physiological parameters from the laboratory environment (LaB) and simulated goalball games (GaM), test relationships between physiological parameters in the laboratory and game technical performance (GTP), and examine the associations between physiological and technical responses during games. Seven elite athletes from the Brazilian National Team performed in LaB environment; (i) an incremental test to determine peak oxygen consumption (O2PEAK), its corresponding speed, and peak blood lactate concentration and (ii) submaximal and supramaximal efforts to estimate maximal anaerobic contribution (AnC). In GaM condition, simulated games were also performed to determine physiological responses throughout the game, and to analyze the GTP (number of throws, defenses, recovery, and density of actions). No correlations (unclear) were found between laboratory and games analyses for O2PEAK [47.3 (17.2) vs. 25.8 (18.2) mLâ Kg-1â min-1], peak blood lactate concentrations [10.2 (5.4) vs. 2.0 (0.7) mM], and total AnC [21.0 (14.0) vs. 4.8 (6.1) mL Kg-1]. O2PEAK in the laboratory condition presented very likely correlations with throw and recovery frequency in games (r = -0.87 and confidence interval [CI] = 0.41; r = -0.90 and CI = 0.35; respectively). Oxygen consumption remained above baseline while blood lactate concentration remained unchanged during the games. The very likely correlation between anaerobic alactic contribution and action density (r = 0.95 and CI = 0.25) highlights the importance of the alactic metabolism. In general, our study demonstrates that goalball can be characterized as a high-intensity intermittent effort, where athlete performance is based on aerobic metabolism predominance while determinant actions are supplied by the anaerobic alactic metabolism. Specifically, higher values of LaB vs. GaM highlighted the need for standardization of specific protocols for goalball evaluation, mainly for the reproduction of ecologically valid values. In addition, O2PEAK correlated with recovery frequency in the LaB condition, demonstrating that passive or low-intensity recovery between actions is fundamental to maintain performance.
RESUMO
Resumo O objetivo deste estudo foi determinar o modo e o grau com que variáveis aeróbias e anaeróbias influenciam o desempenho e a fadiga em "sprints" repetidos (RS) na corrida. Para este fim, participaram do estudo 24 homens, sendo oito corredores velocistas, oito corredores fundistas e oito sujeitos ativos. Em uma pista sintética de atletismo estes sujeitos foram submetidos aos seguintes testes: 1) teste incremental para determinação do VO2max e da velocidade aeróbia máxima (VAM); 2) teste de velocidade constante realizado a 110%VAM para determinar a cinética do VO2 durante exercício e o máximo déficit acumulado de oxigênio (MAOD); 3) teste de "sprints" repetidos (10 "sprints" de 35 m, intercalados com 20 s de recuperação) para determinar o tempo total dos "sprints" (TT), tempo do melhor sprint (TM) e a queda do desempenho em percentual (Sdec). Para analisar a diferença entre os grupos e as relações entre as variáveis foram utilizadas a análise de variância ANOVA "one-way", complementada pelo teste de Tukey, e a correlação de Pearson, respectivamente. O TT em RS foi diferente significativamente entre todos os grupos (velocistas, 49,5 ± 0,8 s; fundistas, 52,6 ± 3,1 s; ativos, 55,5 ± 2,6 s) e Sdec foi significativamente inferior em fundistas comparado aos outros grupos (velocistas, 8,9 ± 2,1%; fundistas, 4,0 ± 2,0%; ativos, 8,4 ± 4,4%). O TT foi correlacionado significativamente com o TM (r = 0,85, p < 0,01) e com o MAOD (r = - 0,54, p < 0,01). Além disso, Sdec foi correlacionado significativamente com variáveis aeróbias (VO2max, r = - 0,58, < 0,01; VAM, r = - 0,59, p < 0,01; constante de tempo "tau", r = 0,45, p = 0,03). Portanto, conclui-se que apesar de índices aeróbios influenciarem na redução da fadiga em RS, o desempenho em RS é principalmente influenciado por características anaeróbias.(AU)
Abstract This study aimed to determine the manner and degree to which aerobic and anaerobic variables influence repeated running sprint performance and ability. Twenty four males (sprinters = 8, endurance runners = 8 and physical active subjects = 8) performed in a synthetic track the following tests: 1) incremental test to determine the VO2max and the maximum aerobic velocity (MAV); 2) constant velocity test performed at 110% of MAV to determine the VO2 kinetics and the maximum accumulated oxygen deficit (MAOD); 3) repeated sprint test (10 sprints of 35-m interspersed by 20s) to determine sprint total time (TT), best sprint time (BT) and score decrement (Sdec). Between-groups comparisons and the correlations between variables were analyzed by one-way ANOVA with a Tukey post-hoc tests and Pearson correlation, respectively. TT was significantly different among all groups (sprinters = 49.5 ± 0.8 s; endurance = 52.6 ± 3.1 s; active = 55.5 ± 2.6 s) and Sdec was significantly lower in endurance runners as compared with sprinters and physical active subjects (sprinters = 8.9 ± 2.1%; endurance = 4.0 ± 2.0%; active = 8.4 ± 4.4%). TT correlated significantly with BT (r = 0.85, p < 0.01) and MAOD (r = - 0.54, p < 0.01). Moreover, Sdec was significantly correlated with aerobic parameters (VO2max, r = - 0.58, p < 0.01; MAV, r = - 0.59, p < 0.01; time constant tau, r = 0.45, p = 0.03). In conclusion, although the aerobic parameters have an important contribution to RS ability, RS performance is mainly influenced by anaerobic parameters.(AU)
Assuntos
Humanos , Masculino , Adulto , Desempenho Atlético , Consumo de Oxigênio , Educação Física e Treinamento , CorridaRESUMO
It has been demonstrated that ischemic preconditioning (IPC) improves endurance performance. However, the potential benefits during anaerobic events and the mechanism(s) underlying these benefits remain unclear. Fifteen recreational cyclists were assessed to evaluate the effects of IPC of the upper thighs on anaerobic performance, skeletal muscle activation, and metabolic responses during a 60-s sprint performance. After an incremental test and a familiarization visit, subjects were randomly submitted in visits 3 and 4 to a performance protocol preceded by intermittent bilateral cuff inflation (4 × (5 min of blood flow restriction + 5 min reperfusion)) at either 220 mm Hg (IPC) or 20 mm Hg (control). To increase data reliability, each intervention was replicated, which was also in a random manner. In addition to the mean power output, the pulmonary oxygen uptake, blood lactate kinetics, and quadriceps electromyograms (EMGs) were analyzed during performance and throughout 45 min of passive recovery. After IPC, performance was improved by 2.1% compared with control (95% confidence intervals of 0.8% to 3.3%, P = 0.001), followed by increases in (i) the accumulated oxygen deficit, (ii) the amplitude of blood lactate kinetics, (iii) the total amount of oxygen consumed during recovery, and (iv) the overall EMG amplitude (P < 0.05). In addition, the ratio between EMG and power output was higher during the final third of performance after IPC (P < 0.05). These results suggest an increased skeletal muscle activation and a higher anaerobic contribution as the ultimate responses of IPC on short-term exercise performance.
Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Precondicionamento Isquêmico/métodos , Adulto , Índice de Massa Corporal , Dieta , Eletromiografia , Humanos , Masculino , Músculo Esquelético/metabolismo , Dinâmica não Linear , Consumo de Oxigênio , Reperfusão , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto JovemRESUMO
The purpose of this study was to investigate the acute effects of photobiomodulation therapy using cluster light-emitting diodes (LEDT; 104 diodes) (wavelength 660 and 850 nm; energy density 1.5 and 4.5 J/cm(2); energy 60 J at each point; total energy delivered 600 J) on alternative maximal accumulated oxygen deficit (MAODALT) and time to exhaustion, during a high-intensity running effort. Fifteen moderately active and healthy males (age 25.1 ± 4.4 years) underwent a graded exercise test and two supramaximal exhaustive efforts at 115 % of the intensity associated with maximal oxygen uptake performed after acute LEDT or placebo irradiation in a double-blind, crossover, and placebo-controlled study design. The MAODALT was assumed as the sum of both oxygen equivalents estimated from the glycolytic and phosphagen metabolism pathways during each supramaximal effort. For the statistical analysis, a paired t test was used to determine differences between the treatments. The significance level was assumed as 95 %. In addition, a qualitative analysis was used to determine the magnitude of differences between groups. No significant differences were found for the values of oxygen equivalents from each energetic metabolism (P ≥ 0.28), for MAODALT values between the LEDT and placebo conditions (P ≥ 0.27), or for time to exhaustion (P = 0.80), except for the respiratory exchange ratio (P = 0.01). The magnitude-based inference of effect size reported only a possibly negative effect of photobiomodulation on MAODALT when expressed in units relative to body mass and on the glycolysis pathway (26 %). In summary, LEDT after a high-intensity running effort did not alter the MAODALT, metabolic energy pathways, or high-intensity running performance.
Assuntos
Lasers , Fadiga Muscular/efeitos dos fármacos , Esforço Físico/efeitos da radiação , Corrida/fisiologia , Adulto , Anaerobiose , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Fadiga Muscular/efeitos da radiação , Consumo de Oxigênio , Placebos , Fatores de TempoRESUMO
The present study investigated the accumulated oxygen deficit (AOD) method to assess the energy cost in resistance exercises (RE). The aim of the study was to evaluate the aerobic and anaerobic energy release during resistance exercises performed at 80% 1-RM in four exercises (half squat, bench press, triceps extension and lat pull down), as well as the accuracy of its estimation. The sample comprised 14 men (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body mass = 79.0 ± 11.1 kg; and estimated fat mass = 10.5 ± 4.6%). Test and re-test of 1-RM were applied to every exercise. Low-intensity bouts at 12, 16, 20, and 24% of 1-RM were conducted. Energy cost was then extrapolated to 80% 1-RM exhaustive bout and relative energy contribution were assessed. By utilizing the AOD method, the results of the present study suggest a great proportion of anaerobic metabolism during exercise at 80% 1-RM in the four RE that were analyzed: Bench press = 77,66±6,95%; Half squat = 87,44±6,45%; Triceps extension = 63,91±9,22%; Lat pull down = 71,99±13,73 %. The results of the present study suggest that AOD during resistance exercises presents a pattern that does not match the reports in the literature for other types of exercise. The accuracy of the total energy demand estimation at 80% 1-RM was acceptable in the Bench press, in the Triceps extension and in the Lat pull down, but no in the Half squat. More studies are warranted to investigate the validity of this method in resistance exercise.