Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
Int J Clin Oncol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995462

RESUMO

BACKGROUND: Serum level of tartrate-resistant acid phosphatase 5b (TRACP5b) is an excellent serum marker of bone resorption. In patients with giant cell tumor of bone (GCTB), TRACP5b levels are reportedly elevated. This study investigated whether TRACP5b could be a diagnostic serum marker and be useful for detecting postoperative disease progression for GCTB. METHODS: Cohort 1: We abstracted data from 120 patients with TRACP5b measurements from our database: 49 patients with GCTB and 71 patients non-GCTB. We compared serum TRACP5b values between the GCTB and non-GCTB groups. Cohort 2 included 47 patients with GCTB who had more than 6 months of follow-up and multiple TRACP5b values. For patients with local recurrence, TRACP5b change rate was calculated by comparing the TRACP5b value just before progression (a) with the value at the time of progression (b): Change rate = [(b)-(a)]/(a). In the non-progression group, the change rate was calculated from the two consecutive TRACP5b values, (c) and (d): Change rate =[(c)-(d)]/(c). We compared TRACP5b change rates between the progression and non-progression groups. RESULTS: Cohort 1: The GCTB group had a significantly higher mean TRACP5b value (1756 ± 2021 mU/dL) than the non-GCTB group (415 ± 219 mU/dL) (p < 0.0001). Cohort 2: The mean TRACP5b change rate of the progression group was significantly higher than the non-progression group (8.53 ± 8.52 and 0.24 ± 0.27, respectively; p < 0.0001). CONCLUSION: TRACP5b is a useful diagnostic marker in GCTB. The rate of change in serum TRACP5b values is a highly sensitive marker for predicting local recurrence in GCTB.

2.
Talanta ; 278: 126451, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917549

RESUMO

Developing water-soluble nanomaterials with high photoluminescence emission and high yield for biological analysis and imaging is urgently needed. Herein, water-soluble blue emitting silicon and nitrogen co-doped carbon dots (abbreviated as Si-CDs) of a high photoluminescence quantum yield of 80 % were effectively prepared with high yield rate (59.1 %) via one-step hydrothermal treatment of N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) and trans-aconitic acid. Furthermore, the Si-CDs demonstrate environmental robustness, photo-stability and biocompatibility. Given the importance of the potentially abnormal levels of acid phosphatase (ACP) in cancer diagnosis, developing a reliable and sensitive ACP measurement method is of significance for clinical research. The Si-CDs unexpectedly promote the catalytic oxidation of ACP on dopamine (DA) to polydopamine under acidic conditions through the produced reactive oxygen species (ROS). Correspondingly, a fluorescence response strategy using Si-CDs as the dual functions of probes and promoting enzyme activity of ACP on catalyzing DA was constructed to sensitively determine ACP. The quantitative analysis of ACP displayed a linear range of 0.1-60 U/L with a detection limit of 0.056 U/L. The accurate detection of ACP was successfully achieved in human serum through recovery tests. As a satisfactory fluorescent probe, Si-CDs were successfully applied to fluorescent imaging of A549 cells in cytoplasmic with long-term and safe staining. The Si-CDs have the dual properties of outstanding fluorescent probes and auxiliary oxidase activity, indicating their great potential in multifunctional applications.

3.
Mol Med ; 30(1): 89, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879488

RESUMO

BACKGROUND: Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. METHODS: Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. RESULTS: The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3ß (GSK3ß)/ß-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3ß/ß-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3ß activity through ERK-mediated phosphorylation, thereby affecting ß-catenin degradation. CONCLUSION: ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3ß/ß-catenin signaling pathway.


Assuntos
Proliferação de Células , Fibrose , Infarto do Miocárdio , Fosfatase Ácida Resistente a Tartarato , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Movimento Celular
4.
J Hazard Mater ; 474: 134867, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861900

RESUMO

Organic phosphorus (Po) is a large component of soil P, but it is often unavailable for plant uptake. Purple acid phosphatases (PAP) can hydrolyze a wide range of Po, playing an important role in Po utilization by plants. In this study, we investigated a novel secretary PvPAP1 from the As-hyperaccumulator Pteris vittata, which can effectively utilize exogenous Po, including adenosine triphosphate (ATP) and phytate. Unlike other PAP, PvPAP1 was abundantly-expressed in P. vittata roots, which was upregulated 3.5-folds under P-deprivation than P-sufficient conditions. When expressed in tobacco, its activity in the roots of PvPAP1-Ex lines was ∼8 folds greater than that in wild-type (WT) plants. Besides, PvPAP1 exhibited its secretory ability as evidenced by the sapphire-blue color on the root surface after treating with 5-bromo-4-chloro-3-indolyl phosphate. In a long-term experiment using sand media, PvPAP1-expressing tobacco plants showed 25-30 % greater root biomass than WT plants when using ATP as the sole P source. This is because PvPAP1-expression enhanced its phosphatase activity by 6.5-9.2 folds in transgenic tobacco, thereby increasing the P contents by 39-41 % in its roots under ATP treatment and 9.4-30 % under phytate treatment. The results highlight PvPAP1 as a novel secreted phosphatase crucial for external Po utilization in P. vittata, suggesting that PvPAP1 has the potential to serve as a valuable gene resource for enhancing Po utilization by crop plants.


Assuntos
Nicotiana , Fósforo , Ácido Fítico , Raízes de Plantas , Pteris , Ácido Fítico/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Fósforo/metabolismo , Pteris/metabolismo , Pteris/genética , Pteris/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Hidrólise , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosfatase Ácida/metabolismo , Fosfatase Ácida/genética , Arsênio/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749376

RESUMO

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Assuntos
Fósforo , Vicia faba , Vicia faba/crescimento & desenvolvimento , Vicia faba/fisiologia , Simbiose , Biomassa , Fósforo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Carbono/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Expressão Gênica , Transcrição Gênica
6.
J Clin Med ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792313

RESUMO

Background: Multiple myeloma (MM) accounts for about 10-15% of all diagnosed hematologic malignancies and about 1-2% of all cancer cases. Approximately 80-90% of MM patients develop bone disease and the changes rarely regress. It is only possible to stop or slow their progression. A major role in bone destruction in MM is attributed to the Wnt signaling pathway, and its action can be modified by various types of interventions including training and diet. Therefore, the aim of this project was to evaluate the effects of a Nordic Walking (NW) training cycle and intermittent fasting (IF) on the levels of selected bone turnover markers associated with the Wnt pathway in patients with MM. Materials and methods: Results from 35 patients divided into training (NW and IF NW) and non-training (IF and control) groups were included in the analysis. A 6-week training cycle involving 60 min workouts 3 times a week was conducted. Body mass and composition as well as the levels of vitamin D, calcium and phosphorus, beta2-microglobulin, and albumin were examined before and after the completion of the training cycle. Markers of bone turnover were also determined: sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), osteoprotegrin (OPG), osteopontin (OPN), and Tartrate-resistant acid phosphatase 5b (TRACP 5b). Results: There was no negative effect of IF or combined training and fasting on the nutritional status of the patients (the level of albumins was unchanged). Both training groups showed an increase in serum concentrations of the active metabolite of vitamin D (IF NW and NW: p = 0.001 and p = 0.022, respectively). The change in the concentration of this vitamin negatively correlated with the concentration of TRACP 5b (r = -0.413, p = 0.014). Evaluating the concentrations of markers related to bone turnover, a reduction in the concentrations of SOST (time: p = 0.026, time vs. group: p = 0.033) and TRACP 5b (time: p < 0.001, time vs. group p < 0.001) was indicated. Conclusions: The obtained results allow one to indicate the training with the poles as a safe and beneficial form of physical activity that should be recommended to patients suffering from MM. However, the results obtained in the present study are not sufficient to show the beneficial effect of IF applied without trainings.

7.
Insects ; 15(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786863

RESUMO

This work attempts to find the reasons for the rather limited range of occurrence of Cheilotoma musciformis in Poland, based on soil properties, which affects both the plant cover and the entomofauna. The aim of the study was to assess the influence of soil enzyme activity on the occurrence of Ch. musciformis in xerothermic grasslands in Southern Poland. The sites inhabited by the beetle were most often extensively grazed by farm animals or had recently been cleared of bushes. The control plots were in wasteland. The soils of most sites with Ch. musciformis were characterized by significantly higher activity of the tested enzymes and higher content of total organic carbon and total nitrogen, as well as lower pHKCl compared to the control sites. The higher enzymatic activity of soils in sites with the beetle than in the control sites may indicate the dependence of the occurrence of this beetle on the presence of patches of extensively grazed xerothermic grasslands. Grazing influences the behavior of preferred host plant species. Therefore, when planning active protection of xerothermic grasslands inhabited by Ch. musciformis, changes in the biochemical properties of the soil and vegetation structure should be taken into account.

8.
Cureus ; 16(4): e58597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765351

RESUMO

We report a rare case of a 59-year-old male with a history of metastatic prostate cancer presenting with acute onset dyspnea due to extensive bilateral pleural effusions. This case highlights the rarity of metastatic prostate cancer with pleural involvement and underscores the importance of accurate diagnosis using cytopathology and immunohistochemical staining.

9.
J Periodontal Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742802

RESUMO

AIMS: This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. METHODS: Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1ß level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. RESULTS: Periodontitis significantly increased MPO activity, interleukin-1ß level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1ß level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. CONCLUSION: UMB improved periodontitis by reducing inflammation and bone markers.

10.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602702

RESUMO

Pyridoxal 5'-phosphate (PLP) is highly valuable in food and medicine. However, achieving the efficient biosynthesis of PLP remains challenging. Here, a salvage pathway using acid phosphatase from Salmonella typhi (StAPase) and pyridoxine oxidase from Escherichia coli (EcPNPO) as pathway enzymes was established for the first time to synthesize PLP from pyridoxine (PN) and pyrophosphate (PPi). StAPase was identified as a rate-limiting enzyme. Two protein modification strategies were developed based on the PN phosphorylation mechanism: (1) improving the binding of PN into StAPase and (2) enhancing the hydrophobicity of StAPase's substrate binding pocket. The kcat/Km of optimal mutant M7 was 4.9 times higher than that of the wild type. The detailed mechanism of performance improvement was analyzed. Under the catalysis of M7 and EcPNPO, a PLP high-yielding strain of 14.5 ± 0.55 g/L was engineered with a productivity of 1.0 ± 0.02 g/(L h) (the highest to date). The study suggests a promising method for industrial-scale PLP production.

11.
J Biol Eng ; 18(1): 26, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589951

RESUMO

BACKGROUND: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. Using eggshell waste as a renewable energy source has been a hot topic recently. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. RESULTS: Drawing on both molecular and morphological characterizations, the most potent ACP-producing B. sonorensis strain ACP2, was identified as a local bacterial strain obtained from the effluent of the paper and pulp industries. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD) and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L-1 with an ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h-1. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suitable and favoured setting for improving ACP and organic acids production. Quantitative and qualitative analyses of the produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshell particles. CONCLUSIONS: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase, accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

12.
Front Chem ; 12: 1359191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633986

RESUMO

Utilization of organic phosphates and insoluble phosphates for the gradual generation of plant-available phosphorus (P) is the only sustainable solution for P fertilization. Enzymatic conversions are one of the best sustainable routes for releasing P to soil. Phosphatase enzyme aids in solubilizing organic and insoluble phosphates to plant-available P. We herein report the preparation of highly functional chitosan beads co-immobilized with acid phosphatase and alkaline phosphatase enzymes via a glutaraldehyde linkage. The dual enzyme co-immobilized chitosan beads were characterized using Fourier-transform infrared (FTIR), thermogravimetric (TGA), and scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analyses to confirm the immobilization. The co-immobilized system was found to be active for a broader pH range of ∼4-10 than the individually bound enzymes and mixed soluble enzymes. The bound matrix exhibited pH optima at 6 and 9, respectively, for acid and alkaline phosphatase and a temperature optimum at 50°C. The phosphate-solubilizing abilities of the chitosan-enzyme derivatives were examined using insoluble tri-calcium phosphate (TCP) for wide pH conditions of 5.5, 7, and 8.5 up to 25 days. The liberation of phosphate was highest (27.20 mg/mL) at pH 5.5 after the defined period. The residual soil phosphatase activity was also monitored after 7 days of incubation with CBE for three different soils of pH ∼5.5, 7, and 8.5. The residual phosphatase activity increased for all the soils after applying the CBE. The germination index of the Oryza sativa (rice) plant was studied using different pH buffer media upon the application of the CBE in the presence of tri-calcium phosphate as a phosphate source. Overall, the dual-enzyme co-immobilized chitosan beads were highly effective over a wide pH range for generating plant-available phosphates from insoluble phosphates. The chitosan-enzyme derivative holds the potential to be used for sustainable phosphorus fertilization with different insoluble and organic phosphorus sources.

13.
JBMR Plus ; 8(5): ziae033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623484

RESUMO

Vitamin D deficiency during infancy has been associated with increased bone turnover rate and bone mineral loss. However, few studies have examined bone turnover markers (BTMs) for both bone formation and resorption in infants with vitamin D deficiency. Here, we analyzed serum concentrations of 25OHD, intact parathormone (iPTH), and BTMs including total alkaline phosphatase (ALP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), and serum type I collagen N-telopeptide (NTx) as well as basic clinical characteristics of 456 infants (626 samples) aged less than 12 mo born at Saitama City Hospital, Japan (latitude 35.9° North) between January 2021 and December 2022. One hundred sixteen infants (147 samples) were classified as having vitamin D deficiency (25OHD < 12.0 ng/mL), and 340 infants (479 samples) had sufficient vitamin D levels (25OHD ≥ 12.0 ng/mL). In addition to 25OHD and ALP, both TRACP-5b and sNTx were measured in 331 infants (418 samples), while 90 infants (105 samples) had only TRACP-5b measured and 101 infants (103 samples) had only sNTx measured. Statistical comparison of 104 subjects each in the vitamin D deficiency and sufficiency groups after matching for the background characteristics revealed that the vitamin D deficiency group had significantly higher levels of ALP and iPTH compared with the sufficiency group (P = <.0001, .0012, respectively). However, no significant differences were found in TRACP-5b and NTx levels between the 2 groups (P = .19, .08, respectively). Our findings suggest discordant responses between bone formation and resorption markers in subclinical vitamin D deficiency during infancy.

14.
Curr Issues Mol Biol ; 46(4): 3424-3437, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38666945

RESUMO

Escherichia coli phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes. This study explored a homologous protein production approach for displaying AppA on the cell surface of E. coli by engineering its outer membrane (OM) for extracellular expression. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of total bacterial lysates and immunofluorescence microscopy of non-permeabilized cells revealed protein expression, whereas activity assays using whole cells or OM fractions indicated functional enzyme display, as evidenced by consistent hydrolytic rates on typical substrates (i.e., p-nitrophenyl phosphate and phytic acid). Furthermore, the in vitro results obtained using a simple method to simulate the gastrointestinal tract of poultry suggest that the whole-cell biocatalyst has potential as a feed additive. Overall, our findings support the notion that biomembrane-immobilized enzymes are reliable for the hydrolysis of poorly digestible substrates relevant to animal nutrition.

15.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612461

RESUMO

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Assuntos
Glycine max , Fixação de Nitrogênio , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Sementes/genética , Fósforo , Nitrogênio
16.
World J Microbiol Biotechnol ; 40(6): 171, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630327

RESUMO

A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, ß-Turns, and ß-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.


Assuntos
Magnésio , Simulação de Dinâmica Molecular , Radioisótopos , Proteínas de Saccharomyces cerevisiae , Fosfatase Ácida/genética , Saccharomyces cerevisiae/genética , Histidina , Simulação de Acoplamento Molecular , Proteínas de Saccharomyces cerevisiae/genética
17.
Bioanalysis ; 16(10): 485-497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530222

RESUMO

Enzymes have been used for disease diagnosis for many decades; however, advancements in technology like ELISA and flow cytometry-based detection have significantly increased their use and have increased the sensitivity of detection. Technological advancements in recombinant enzyme production have increased enzymatic stability, and the use of colorimetric-based and florescence-based assays has led to their increased use as biomarkers for disease detection. Enzymes like acid phosphatase, cathepsin, lactate dehydrogenase, thymidine kinase and creatine kinase are indispensable markers for diagnosing cancer, cardiovascular diseases and others. This minireview summarizes various enzymes used in disease diagnosis, their metabolic role, market value and potential as disease markers across various metabolic and other disorders.


[Box: see text].


Assuntos
Biomarcadores , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Enzimas/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo
18.
Appl Spectrosc ; 78(6): 633-643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529537

RESUMO

The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.


Assuntos
Fosfatase Ácida , Carbono , Colorimetria , Limite de Detecção , Fósforo , Pontos Quânticos , Colorimetria/métodos , Carbono/química , Pontos Quânticos/química , Humanos , Fosfatase Ácida/análise , Fosfatase Ácida/sangue , Fosfatase Ácida/química , Fósforo/química , Benzidinas/química , Peroxidase/química , Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Oxirredução , Ácido Ascórbico/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Ácido Ascórbico/análogos & derivados
19.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473742

RESUMO

This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.


Assuntos
Polissacarídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo , Processamento de Proteína Pós-Traducional , Conformação Molecular
20.
J Colloid Interface Sci ; 661: 1060-1069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335790

RESUMO

Herein, a novel dual-mode probe for organophosphorus pesticides (OPs) colorimetric and photothermal detection was developed based on manganese modified porphyrin metal-organic framework (PCN-224-Mn). PCN-224-Mn had excellent oxidase-like activity and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB) to blue-green oxidation state TMB (oxTMB), which exhibited high temperature under near-infrared irradiation. l-ascorbate-2-phosphate was hydrolyzed by acid phosphatase to produce ascorbic acid, which weakened colorimetric and photothermal signals by impacting oxTMB generation. The presence of OPs blocked the production of ascorbic acid by irreversibly inhibiting the activity of acid phosphatase, causing the restoration of chromogenic reaction and the increase of temperature. Under the optimal conditions, the probe showed a good linear response to OPs in the concentration range of 5 âˆ¼ 10000 ng/mL, using glyphosate as the analog. The detection limits of glyphosate in colorimetric mode and photothermal mode were 1.47 ng/mL and 2.00 ng/mL, respectively. The probe was successfully used for sensitive identification of OPs residues in tea, brown rice, and wheat flour. This work proposes a simple and reliable colorimetric/photothermal platform for OPs identification, which overcomes the problem that single-mode detection probes are susceptible to external factors, and has broad application potential in the field of food safety.


Assuntos
Benzidinas , Estruturas Metalorgânicas , Praguicidas , Compostos Organofosforados , Colorimetria , Farinha , Triticum , Ácido Ascórbico/química , Fosfatase Ácida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...