Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Cell Chem Biol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889717

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119791, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925478

RESUMO

Iron­sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.

3.
Environ Microbiome ; 19(1): 36, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831353

RESUMO

BACKGROUND: Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging. RESULTS: Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia. CONCLUSIONS: By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.

4.
Microbiol Spectr ; 12(7): e0394323, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757984

RESUMO

Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and ß-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.


Assuntos
Proteínas Fúngicas , Lignina , Proteômica , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Secretoma/metabolismo , Biomassa , Celulases/metabolismo , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/enzimologia
5.
Phytomedicine ; 129: 155657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692076

RESUMO

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Assuntos
Neoplasias Pulmonares , Via de Pentose Fosfato , Xantonas , Xantonas/farmacologia , Animais , Via de Pentose Fosfato/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Humanos , Fosfogluconato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças
6.
mSystems ; 9(5): e0017924, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38656122

RESUMO

The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE: This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.


Assuntos
Trifosfato de Adenosina , Interações Hospedeiro-Patógeno , Queratinócitos , Macrófagos , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Trifosfato de Adenosina/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Queratinócitos/imunologia , Células THP-1 , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Células HaCaT
7.
Chembiochem ; : e202400187, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639212

RESUMO

Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.

8.
Adv Sci (Weinh) ; 11(18): e2309515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430530

RESUMO

The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.


Assuntos
Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Humanos , Lactonas/metabolismo , Lactonas/química
9.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401519

RESUMO

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácido Glicirretínico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácido Glicirretínico/farmacologia , Neoplasias Pulmonares/patologia , Caspase 3 , Peroxirredoxina VI/uso terapêutico , Linhagem Celular Tumoral , Apoptose
10.
Bioorg Chem ; 145: 107187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354502

RESUMO

Ischemic stroke has high mortality and morbidity rates and is the second leading cause of death in the world, but there is no definitive medicine. Seventy Flavors Pearl Pill (SFPP) is a classic formula in Tibetan Medicine. Clinical practice has shown the attenuation effect of SFPP on blood pressure disorders, strokes and their sequelae and other neurological symptoms, but its mechanism remains to be elucidated. In this study, we established three animal models in vivo and three cell models to evaluate the anti-hypoxia, anti-ischemia, and reperfusion injury prevention effects of SFPP. Quantitative proteomics revealed that oxidative phosphorylation (OXPHOS) is essential for SFPP's efficacy. Then, cysteine-activity based protein profiling technology, which reflects redox stress at the proteome level, was employed to illustrate that SFPP brought functional differences of critical proteins in OXPHOS. In addition, quantitative metabolomics revealed that SFPP affects whole energy metabolism with OXPHOS as the core. Finally, we performed a compositional identification of SFPP to initially explore the components of potential interventions in OXPHOS. These results provide new perspectives and tools to explore the mechanism of herbal medicine. The study suggests that OXPHOS could be a potential target for further research and intervention of ischemic stroke treatment.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Proteômica , Fosforilação Oxidativa , Acidente Vascular Cerebral/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Estresse Oxidativo
11.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260474

RESUMO

Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.

12.
Chembiochem ; 25(4): e202300736, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38195841

RESUMO

PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.

13.
J Agric Food Chem ; 72(3): 1444-1453, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206812

RESUMO

1,3,4-Oxadiazole thioethers have shown exciting antibacterial activities; however, the current mechanism of action involving such substances against bacteria is limited to proteomics-mediated protein pathways and differentially expressed gene analysis. Herein, we report a series of novel 1,3,4-oxadiazole thioethers containing a carboxamide/amine moiety, most of which show good in vitro and in vivo bacteriostatic activities. Compounds A10 and A18 were screened through CoMFA models as optimums against Xanthomonas oryzae pv. oryzae (Xoo, EC50 values of 5.32 and 4.63 mg/L, respectively) and Xanthomonas oryzae pv. oryzicola (Xoc, EC50 values of 7.58 and 7.65 mg/L, respectively). Compound A10 was implemented in proteomic techniques and activity-based protein profiling (ABPP) analysis to elucidate the antibacterial mechanism and biochemical targets. The results indicate that A10 disrupts the growth and pathogenicity of Xoc by interfering with pathways associated with bacterial virulence, including the two-component regulation system, flagellar assembly, bacterial secretion system, quorum sensing, ABC transporters, and bacterial chemotaxis. Specifically, the translational regulator (CsrA) and the virulence regulator (Xoc3530) are two effective target proteins of A10. Knocking out the CsrA or Xoc3530 gene in Xoc results in a significant reduction in the motility and pathogenicity of the mutant strains. This study contributes available molecular entities, effective targets, and mechanism basis for the management of rice bacterial diseases.


Assuntos
Oryza , Oxidiazóis , Xanthomonas , Sulfetos/química , Proteômica , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Oryza/microbiologia , Doenças das Plantas/microbiologia
14.
J Pharm Sci ; 113(3): 744-753, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37758159

RESUMO

Host cell proteins (HCPs) are process-related impurities that can negatively impact the quality of biotherapeutics. Some HCPs possess enzymatic activity and can affect the active pharmaceutical ingredient (API) or excipients such as polysorbates (PS). PSs are a class of non-ionic surfactants commonly used as excipients in biotherapeutics to enhance the stability of APIs. The enzyme activity of certain HCPs can result in the degradation of PSs, leading to particle formation and decreased shelf life of biotherapeutics. Identifying and characterizing these HCPs is therefore crucial. This study employed the Activity-Based Protein Profiling (ABPP) technique to investigate the effect of pH on the activity of HCPs that have the potential to degrade polysorbates. Two probes were utilized: the commercially available fluorophosphonate (FP)-Desthiobiotin probe and a probe based on the antiobesity drug, Orlistat. Over 50 HCPs were identified, showing a strong dependence on pH-milieu regarding their enzyme activity. These findings underscore the importance of accounting for pH variations in the ABPP method and other investigations of HCP activity. Notably, the Orlistat-based probe (OBP) enabled us to investigate the enzymatic activity of a wider range of HCPs, emphasizing the advantage of using more than one probe for ABPP. Finally, this study led to the discovery of previously unreported active enzymes, including three HCPs from the carboxylesterase enzyme family.


Assuntos
Excipientes , Polissorbatos , Polissorbatos/química , Excipientes/química , Anticorpos Monoclonais/química , Orlistate , Espectrometria de Massas/métodos , Concentração de Íons de Hidrogênio
15.
Proc Natl Acad Sci U S A ; 120(52): e2304900120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109529

RESUMO

Diacylglycerol lipase-beta (DAGLß) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLß ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLß in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLß blockade, thereby directly supporting DAGLß-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.


Assuntos
Endocanabinoides , Glicerídeos , Humanos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Lipase Lipoproteica/metabolismo , Ácidos Araquidônicos/metabolismo , Dor
16.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961622

RESUMO

ß-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drives the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging deeming this transcription factor as "undruggable." Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify a monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 through targeting four distinct cysteines within the armadillo repeat domain-C439, C466, C520, and C619-leading to a destabilization of CTNNB1. Using covalent chemoproteomic approaches, we show that EN83 directly engages CTNNB1 in cells with a moderate degree of selectivity. We further demonstrate that direct covalent targeting of three of these four cysteines--C466, C520, and C619--in cells contributes to CTNNB1 degradation in cells. We also demonstrate that EN83 can be further optimized to yield more potent CTNNB1 binders and degraders. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through a destabilization-mediated degradation.

17.
Biomed Pharmacother ; 169: 115815, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37956480

RESUMO

Celastrol, a natural compound purified from the Chinese herb Tripterygium wilfordii Hook. f., has excellent pharmacological activity for the treatment of various diseases. Assessing the safety of its use is essential for its development into a clinical medicine. However, research assessing its toxicity on the female reproductive system has never been reported. In this study, the ovarian toxicity of celastrol and its underlying mechanism were investigated. We found that celastrol induced premature ovarian insufficiency and apoptosis in granulosa cells. Activity-based protein profiling results showed that high mobility group box 1 was a candidate target protein of celastrol. Celastrol directly bound to Cys106 of high mobility group box 1. Knocking down high mobility group box 1 induced apoptosis of granulosa cells, while overexpression of this gene reversed celastrol-induced apoptosis. Celastrol treatment upregulated p21 transcription, but overexpression of high mobility group box 1 reversed this upregulation. Thus, Celastrol induces premature ovarian insufficiency and apoptosis in granulosa cells by directly binding to high mobility group box 1 and interfering with its biological function to regulate p21 transcription. This study provides valuable information for assessing the safety of the clinical application of celastrol on female patients.


Assuntos
Triterpenos , Humanos , Feminino , Triterpenos/farmacologia , Triterpenos Pentacíclicos , Apoptose , Células da Granulosa
18.
Exploration (Beijing) ; 3(5): 20230047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37933286

RESUMO

In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.

19.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909922

RESUMO

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Assuntos
Azetidinas , Inibidores Enzimáticos , Metiltransferases , tRNA Metiltransferases , Humanos , Acrilamidas , Cisteína/metabolismo , Metilação , Metiltransferases/antagonistas & inibidores , Proteômica , RNA de Transferência/química , tRNA Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
20.
Adv Pharm Bull ; 13(4): 639-645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38022804

RESUMO

Activity-based protein profiling (ABPP) is a chemoproteomic approach that employs small-molecule probes to directly evaluate protein functionality within complex proteomes. This technology has proven to be a potent strategy for mapping ligandable sites in organisms and has significantly impacted drug discovery processes by enabling the development of highly selective small-molecule inhibitors and the identification of new therapeutic molecular targets. Despite being nearly a quarter of a century old as a chemoproteomic tool, ABPP has yet to undergo a bibliometric analysis. In order to gauge its scholarly impact and evolution, a bibliometric analysis was performed, comparing all 1919 reported articles with the articles published in the last five years. Through a comprehensive data analysis, including a 5-step workflow, the most influential articles were identified, and their bibliometric parameters were determined. The 1919 analyzed articles span from 1999 to 2022, providing a comprehensive overview of the historical and current state of ABPP research. This analysis presents, for the first time, the characteristics of the most influential ABPP articles, offering valuable insight into the research conducted in this field and its potential future directions. The findings underscore the crucial role of ABPP in drug discovery and novel therapeutic target identification, as well as the need for continued advancements in the development of novel chemical probes and proteomic technologies to further expand the utility of ABPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...