Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.444
Filtrar
1.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38989805

RESUMO

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Assuntos
Adipócitos , Ciclo Celular , Desdiferenciação Celular , Proliferação de Células , Animais , Adipócitos/citologia , Adipócitos/metabolismo , Camundongos , Células Cultivadas , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
2.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969002

RESUMO

Adipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPCs) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health. Our aim was to elucidate the depot-specific adipogenic capacity and ECM properties of subcutaneous (SAT) and visceral (VAT) AT of dairy cows and define how the ECM affects adipogenesis. Flank SAT and omental VAT samples were collected from dairy cows in a local abattoir. Tissue samples were utilized for transcriptome analysis, targeted RT-qPCR for adipogenic markers, adipocyte sizing, assessment of viscoelastic properties and collagen accumulation, and then decellularized for native ECM isolation. For in vitro analyses, SAT and VAT samples were digested via collagenase, and ASPCs cultured for metabolic analysis. Adipogenic capacity was assessed by adipocyte size, quantification of ASPCs in stromal vascular fraction (SVF) via flow cytometry, and gene expression of adipogenic markers. In addition, functional assays including lipolysis and glucose uptake were performed to further characterize SAT and VAT adipocyte metabolic function. Data were analyzed using SAS (version 9.4; SAS institute Inc., Cary, NC) and GraphPad Prism 9. Subcutaneous AT adipogenic capacity was greater than VAT's, as indicated by increased ASPCs abundance, increased magnitude of adipocyte ADIPOQ and FASN expression during differentiation, and higher adipocyte lipid accumulation as shown by an increased proportion of larger adipocytes and abundance of lipid droplets. Rheologic analysis revealed that VAT is stiffer than SAT, which led us to hypothesize that differences between SAT and VAT adipogenic capacity were partly mediated by depot-specific ECM microenvironment. Thus, we studied depot-specific ECM-adipocyte crosstalk using a 3D model with native ECM (decellularized AT). Subcutaneous AT and VAT ASPCs were cultured and differentiated into adipocytes within depot-matched and mis-matched ECM for 14d, followed by ADIPOQ expression analysis. Visceral AT ECM impaired ADIPOQ expression in SAT cells. Our results demonstrate that SAT is more adipogenic than VAT and suggest that divergences between SAT and VAT adipogenesis are partially mediated by the depot-specific ECM microenvironment.

3.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961351

RESUMO

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Assuntos
Adipocinas , Deficiência de Vitamina D , Vitamina D , Humanos , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/sangue , Masculino , Feminino , Criança , Estudos de Casos e Controles , Adipocinas/sangue , Adolescente , Vitamina D/sangue , Vitamina D/análogos & derivados , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/análise , Resistina/sangue , Nucleobindinas/sangue , Adiponectina/sangue , Adiponectina/deficiência , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Proteínas de Ligação a DNA/sangue , Biomarcadores/sangue , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/complicações
4.
J Agric Food Chem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970495

RESUMO

Konjac glucomannan (KGM), high-viscosity dietary fiber, is utilized in weight management. Previous investigations on the appetite-suppressing effects of KGM have centered on intestinal responses to nutrients and gastric emptying rates, with less focus on downstream hypothalamic neurons of satiety hormones. In our studies, the molecular mechanisms through which KGM and its degradation products influence energy homeostasis via the adipocyte-hypothalamic axis have been examined. It was found that high-viscosity KGM more effectively stimulates enteroendocrine cells to release glucagon-like peptide-1 (GLP-1) and reduces ghrelin production, thereby activating hypothalamic neurons and moderating short-term satiety. Conversely, low-viscosity DKGM has been shown to exhibit stronger anti-inflammatory properties in the hypothalamus, enhancing hormone sensitivity and lowering the satiety threshold. Notably, both KGM and DKGM significantly reduced leptin signaling and fatty acid signaling in adipose tissue and activated brown adipose tissue thermogenesis to suppress pro-opiomelanocortin (POMC) expression and activate agouti-related protein (AgRP) expression, thereby reducing food intake and increasing energy expenditure. Additionally, high-viscosity KGM has been found to activate the adipocyte-hypothalamus axis more effectively than DKGM, thereby promoting greater daily energy expenditure. These findings provide novel insights into the adipocyte-hypothalamic axis for KGM to suppress appetite and reduce weight.

5.
J Therm Biol ; 123: 103906, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38970835

RESUMO

Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.

6.
J Cell Commun Signal ; 18(2): e12022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946719

RESUMO

Inflammation promotes the degradation of the extracellular matrix, which contributes to the development of osteoarthritis (OA). Adipocyte enhancer binding protein 1 (AEBP1) participates in multiple pathological processes related to inflammatory diseases. However, the role of AEBP1 in OA development is unknown. We found a higher AEBP1 expression in articular cartilage of OA patients (n = 20) compared to their normal controls (n = 10). Thus, we inferred that AEBP1 might affect OA progression. Then mice with destabilization of the medial meniscus (DMM) surgery and chondrocytes with IL-1ß treatment (10 ng/mL) were used to mimic OA. The increased AEBP1 expression was observed in models of OA. AEBP1 knockdown in chondrocytes reversed IL-1ß-induced inflammation and extracellular matrix degradation, which was mediated by the inactivation of NF-κB signaling pathway and the increased IκBα activity. Co-immunoprecipitation assay indicated the interaction between AEBP1 and IκBα. Importantly, IκBα knockdown depleted the protective role of AEBP1 knockdown in OA. Moreover, AEBP1 knockdown in mice with OA showed similar results to those in chondrocytes. Collectively, our findings suggest that AEBP1 knockdown alleviates the development of OA, providing a novel strategy for OA treatment.

7.
J Endocr Soc ; 8(8): bvae126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38988671

RESUMO

Obesity is a major public health issue that is associated with metabolic diseases including diabetes mellitus type 2 and metabolic syndrome. This pathology leads to detrimental cardiovascular health and secondary effects, such as lipotoxicity, inflammation, and oxidative stress. Recently, extracellular vesicles (EVs) have been highlighted as novel players participating in human physiology and pathophysiology. In obesity, adipose tissue is related to the active shedding of adipocyte-derived extracellular vesicles (AdEVs). The current review explores and highlights the role of AdEVs and their cargo in obesity and metabolic syndrome. AdEVs are proposed to play an important role in obesity and its comorbidities. AdEVs are biological nanoparticles mainly shed by visceral and subcutaneous adipose tissue, acting in physiological and pathophysiological conditions, and also carrying different cargo biomolecules, such as RNA, microRNA (miRNA), proteins, and lipids, among others. RNA and miRNA have local and systemic effects affecting gene expression in target cell types via paracrine and endocrine actions. State of the art analyses identified some miRNAs, such as miR-222, miR-23b, miR-4429, miR-148b, and miR-4269, that could potentially affect cell pathways involved in obesity-related comorbidities, such as chronic inflammation and fibrosis. Similarly, AdEVs-proteins (RBP4, perilipin-A, FABP, mimecan, TGFBI) and AdEVs-lipids (sphingolipids) have been linked to the obesity pathophysiology. The current knowledge about AdEVs along with further research would support and reveal novel pathways, potential biomarkers, and therapeutic options in obesity.

8.
J Transl Med ; 22(1): 623, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965596

RESUMO

BACKGROUND: Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, our understanding of mechanistic aspect of obesity's impact on EV secretion from human AT remains limited. METHODS: We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eicosapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high-resolution confocal microscopy, and gas chromatography-mass spectrometry, were utilized to study EVs. Plasma EVs were analyzed with imaging flow cytometry. RESULTS: EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipocytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin-positive EVs than those of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secretion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization of excess lipids into circulation. CONCLUSIONS: We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play in human AT biology and metabolic disorders.


Assuntos
Adipócitos , Tecido Adiposo , Vesículas Extracelulares , Inflamação , Obesidade , Humanos , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Metabolismo dos Lipídeos , Feminino , Masculino , Adulto , Ácidos Graxos/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167325, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925485

RESUMO

The mechanism(s) underlying obesity-related postmenopausal (PM) breast cancer (BC) are not clearly understood. We hypothesized that the increased local presence of 'obese' mammary adipocytes within the BC microenvironment promotes the acquisition of an invasive and angiogenic BC cell phenotype and accelerates tumor proliferation and progression. BC cells, treated with primary mammary adipocyte secretome from premenopausal (Pre-M) and PM obese women (ObAdCM; obese adipocyte conditioned-media) upregulated the expression of several pro-tumorigenic factors including VEGF, lipocalin-2 and IL-6. Both Pre-M and PM ObAdCM stimulated endothelial cell recruitment and proliferation and significantly stimulated BC cell proliferation, migration and invasion. IL-6 and LCN2 induced STAT3/Akt signaling in BC cells and STAT3 inhibition abrogated the ObAdCM-stimulated BC cell proliferation and migration. Expression of proangiogenic regulators including VEGF, NRP1, NRP2, IL8RB, TGFß2, and TSP-1 were found to be differentially regulated in mammary adipocytes from obese PM women. Comparative RNAseq indicated an upregulation of PI3K/Akt signaling, ECM-receptor interactions and lipid/fatty acid metabolism in PM versus Pre-M mammary adipocytes. Our results demonstrate that irrespective of menopausal status, cross-talk between obese mammary adipocytes and BC cells promotes tumor aggressiveness and suggest that targeting the LCN2/IL-6/STAT3 signaling axis may be a useful strategy in obesity-driven breast tumorigenesis.

10.
Nutrients ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931278

RESUMO

Corn peptide (CP) is a short, naturally occurring, and physiologically active peptide generated from corn-protease-catalyzed hydrolysis. CP plays a role in preventing obesity-related disorders, but its impact on reducing inflammation is unknown. Hence, this study examined the possible protective effects of corn peptide powder (CPP) against the harmful effects of lipopolysaccharide (LPS), with a particular emphasis on reducing oxidative damage and inflammation in adipocytes. Hence, mature 3T3-L1 adipocytes underwent exposure to 10 ng/mL LPS, with or without CPP (10 and 20 µg/mL). LPS stimulation increased reactive oxygen species and superoxide anion generation. However, this effect was reduced in a dose-dependent manner by pretreatment with CPP. CPP treatment elevated the mRNA expressions of the antioxidant enzymes manganese superoxide dismutase (mnSOD) and glutathione peroxidase 1 (Gpx1) while reducing the mRNA expressions of the cytosolic reactive oxygen species indicators p40 and p67 (NADPH oxidase 2). In addition, CPP inhibited the monocyte chemoattractant protein-1, tumor necrosis factor-alpha, Toll-like receptor 4, and nuclear factor kappa B mRNA expressions induced by LPS. These findings demonstrate that CPP may ameliorate adipocyte dysfunction by suppressing oxidative damage and inflammatory responses through a new mechanism known as Toll-like receptor 4/nuclear factor kappa B-mediated signaling.


Assuntos
Células 3T3-L1 , Adipócitos , Inflamação , Lipopolissacarídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Receptor 4 Toll-Like , Zea mays , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Zea mays/química , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Pós , Peptídeos/farmacologia , Glutationa Peroxidase/metabolismo , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Glutationa Peroxidase GPX1 , Transdução de Sinais/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia
11.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931347

RESUMO

The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.

12.
Arch Dermatol Res ; 316(6): 333, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844593

RESUMO

BACKGROUND: Stiff skin syndrome (SSS) is a rare disease characterized by thickened, indurated skin and limited joint movement. Multiple diverse phenotypes have been reported, and the correlation of severity with the clinical heterogeneity and histopathological findings of SSS needs to be refined. OBJECTIVE: To define subtypes based on clinical features and predict the prognosis of a new SSS classification. METHODS: Eighty-three patients with SSS were retrospectively reviewed for clinicopathological manifestations and routine laboratory workup, including 59 cases obtained from a PubMed search between 1971 and 2022 and 24 cases diagnosed in our department between 2003 and 2022. RESULTS: Among the 83 patients, 27.7, 41, and 31.3% had classic widespread, generalized segmental, and localized SSS, respectively. Joint immobility was present in 100, 71, and 20% of classic, generalized, and localized cases, respectively. Histopathologic findings were common among the 3 groups, and based on that, we further found a difference in the distribution of proliferative collagen. 54.5% of classic and 50% of generalized cases occurred throughout the dermis or the subcutis, whereas 76% of localized cases were mainly involved in the reticular dermis or subcutis. In patients with incipient localized SSS, 42% (21/50) developed generalized SSS, and only 6% (3/50) progressed to classic SSS, whereas more than half of the incipient generalized SSS cases (60.6%, 20/33) developed classic SSS. LIMITATIONS: This retrospective study was limited to previously published cases with limited data. CONCLUSIONS: We propose a distinct clinical classification characterized by lesion distribution, including classic widespread, generalized segmental, and localized SSS, associated with disease severity and prognosis.


Assuntos
Pele , Humanos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Adolescente , Pele/patologia , Adulto Jovem , Criança , Prognóstico , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/classificação , Dermatopatias Genéticas/patologia , Idoso , Índice de Gravidade de Doença , Pré-Escolar , Colágeno/metabolismo , Contratura
13.
Cells ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920656

RESUMO

Background: Despite its increasing incidence and prevalence throughout Western countries, lipedema continues to be a very enigmatic disease, often misunderstood or misdiagnosed by the medical community and with an intrinsic pathology that is difficult to trace. The nature of lipedemic tissue is one of hypertrophic adipocytes and poor tissue turnover. So far, there are no identified pathways responsible, and little is known about the cell populations of lipedemic fat. Methods: Adipose tissue samples were collected from affected areas of both lipedema and healthy participants. For single-cell RNA sequencing analysis, the samples were dissociated into single-cell suspensions using enzymatic digestion and then encapsulated into nanoliter-sized droplets containing barcoded beads. Within each droplet, cellular mRNA was converted into complementary DNA. Complementary DNA molecules were then amplified for downstream analysis. Results: The single-cell RNA-sequencing analysis revealed three distinct adipocyte populations at play in lipedema. These populations have unique gene signatures which can be characterized as a lipid generating adipocyte, a disease catalyst adipocyte, and a lipedemic adipocyte. Conclusions: The single-cell RNA sequencing of lipedemic tissue samples highlights a triad of distinct adipocyte subpopulations, each characterized by unique gene signatures and functional roles. The interplay between these adipocyte subtypes offers promising insights into the complex pathophysiology of lipedema.


Assuntos
Adipócitos , Lipedema , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Adipócitos/metabolismo , Adipócitos/patologia , Análise de Célula Única/métodos , Lipedema/genética , Lipedema/metabolismo , Lipedema/patologia , Análise de Sequência de RNA/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
14.
J Anim Sci Biotechnol ; 15(1): 73, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824596

RESUMO

BACKGROUND: Pork quality is affected by the type of muscle fibers, which is closely related to meat color, tenderness and juiciness. Exosomes are tiny vesicles with a diameter of approximately 30-150 nm that are secreted by cells and taken up by recipient cells to mediate communication. Exosome-mediated muscle-fat tissue crosstalk is a newly discovered mechanism that may have an important effect on intramuscular fat deposition and with that on meat quality. Various of adipose tissue-derived exosomes have been discovered and identified, but the identification and function of muscle exosomes, especially porcine fast/slow myotube exosomes, remain unclear. Here, we first isolated and identified exosomes secreted from porcine extensor digitorum longus (EDL) and soleus (SOL), which represent fast and slow muscle, respectively, and further explored their effects on lipid accumulation in longissimus dorsi adipocytes. RESULTS: Porcine SOL-derived exosomes (SOL-EXO) and EDL-derived exosomes (EDL-EXO) were first identified and their average particle sizes were approximately 84 nm with double-membrane disc- shapes as observed via transmission electron microscopy and scanning electron microscopy. Moreover, the intramuscular fat content of the SOL was greater than that of the EDL at 180 days of age, because SOL intramuscular adipocytes had a stronger lipid-accumulating capacity than those of the EDL. Raman spectral analysis revealed that SOL-EXO protein content was much greater than that of EDL-EXO. Proteomic sequencing identified 72 proteins that were significantly differentially expressed between SOL-EXO and EDL-EXO, 31 of which were downregulated and 41 of which were upregulated in SOL-EXO. CONCLUSIONS: Our findings suggest that muscle-fat tissue interactions occur partly via SOL-EXO promoting adipogenic activity of intramuscular adipocytes.

15.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928386

RESUMO

Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.


Assuntos
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Mitocôndrias , Obesidade , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Obesidade/metabolismo , Obesidade/patologia , Mitocôndrias/metabolismo , Animais , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Estresse Oxidativo , Termogênese
16.
Front Pharmacol ; 15: 1412520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895627

RESUMO

Objective: Browning of white adipocytes is considered an efficient approach to combat obesity. Rosiglitazone induces the thermogenetic program of white adipocytes, but the underlying mechanisms remain elusive. Methods: Expression levels of browning and autophagy flux markers were detected by real-time PCR and immunoblotting. H&E and Oil Red O staining were performed to evaluate the lipid droplets area. Nuclear protein extraction and immunoprecipitation were used to detect the proteins interaction. Results: In this study, we reported that rosiglitazone promoted adipocyte browning and inhibited autophagy. Rapamycin, an autophagy inducer, reversed adipocyte browning induced by rosiglitazone. Autophagy inhibition by rosiglitazone does not prevent mitochondrial clearance, which was considered to promote adipose whitening. Instead, autophagy inhibition increased p62 nuclear translocation and stabilized the PPARγ-RXRα heterodimer, which is an essential transcription factor for adipocyte browning. We found that rosiglitazone activated NRF2 in mature adipocytes. Inhibition of NRF2 by ML385 reversed autophagy inhibition and the pro-browning effect of rosiglitazone. Conclusion: Our study linked autophagy inhibition with rosiglitazone-promoted browning of adipocytes and provided a mechanistic insight into the pharmacological effects of rosiglitazone.

17.
Ann Endocrinol (Paris) ; 85(3): 248-251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871512

RESUMO

Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti's team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.


Assuntos
Tecido Adiposo , Lactação , Animais , Humanos , Feminino , Tecido Adiposo/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Lactação/fisiologia , Gravidez , Transdiferenciação Celular/fisiologia , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Adipócitos Brancos/fisiologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/citologia , Plasticidade Celular/fisiologia , Glândulas Mamárias Humanas/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/citologia , Adipócitos/fisiologia , Adipócitos/citologia
19.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859907

RESUMO

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Assuntos
Adipócitos Bege , Processamento Alternativo , Isoformas de Proteínas , Termogênese , Humanos , Adipócitos Bege/metabolismo , Termogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciação Celular , Adipogenia/genética , Masculino , Feminino , Adulto , Células Cultivadas , Regulação da Expressão Gênica , PPAR gama/genética , PPAR gama/metabolismo
20.
J Biomed Sci ; 31(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862973

RESUMO

BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.


Assuntos
Adipócitos , Resistencia a Medicamentos Antineoplásicos , Omento , Neoplasias Ovarianas , Piroptose , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Omento/metabolismo , Humanos , Adipócitos/metabolismo , Camundongos , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...