Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Animals (Basel) ; 14(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39123805

RESUMO

In this experiment, Lactobacillus plantarum and Lactobacillus buchneri were added individually or in combination to Silphium perfoliatum L. (SP) silage to investigate the effects of different fermentation types of lactobacilli on the fermentation quality, in vitro digestibility, and aerobic stability of SP-silage, with a view to providing a certain scientific basis and technical support for obtaining high-quality SP-silage in production. The experiment comprised a non-additive group (control), an L. plantarum group (LP), an L. buchneri group (LB), and an L. plantarum and L. buchneri mixed treatment group (LPLB). Samples were taken after 60 days of fermentation and analyzed for the fermentation quality, in vitro digestibility, and aerobic stability of the SP-silage. The results showed that the addition of LP, LB, and LPLB significantly reduced the pH and proportion of ammonia nitrogen to total nitrogen and significantly increased the lactic acid, in vitro dry matter digestibility, and in vitro crude protein digestibility in the SP-silage (p < 0.05). Compared to the control group, the dry matter and crude protein contents of the LB and LPLB groups were significantly increased, while the neutral detergent fiber and acid detergent fiber contents were significantly reduced (p < 0.05). The SP-silage supplemented with LPLB had the highest dry matter and crude protein contents. The gross and digestible energies of the SP-silage in the LB and LPLB groups were significantly higher than those in the control and LP groups (p < 0.05). The aerobic stability of the SP-silage was significantly reduced by 24.14% in the LP group and increased by 58.62% and 34.48% in the LB and LPLB groups, respectively, compared to the control group (p < 0.05). It was shown that adding a combination of LP and LB resulted in the best fermentation quality, nutritional value, and in vitro digestibility of the SP-silage. LB was effective in improving the aerobic stability of SP-silage.

2.
Plants (Basel) ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891280

RESUMO

Enhancing the aerobic stability of whole-plant corn silage is essential for producing high-quality silage. Our research assessed the effect of inoculation with Lactobacillus buchneri or Bacillus licheniformis and its modulation of the bacterial and fungal microbial community structure in an aerobic stage of whole-plant corn silage. Following treatment with a distilled sterile water control, Lactobacillus buchneri, and Bacillus licheniformis (2 × 105 cfu/g), whole-plant corn was ensiled for 60 days. Samples were taken on days 0, 3, and 7 of aerobic exposure, and the results showed that inoculation with Lactobacillus buchneri or Bacillus licheniformis improved the aerobic stability of silage when compared to the effect of the control (p < 0.05). Inoculation with Bacillus licheniformis attenuated the increase in pH value and the decrease in lactic acid in the aerobic stage (p < 0.05), reducing the filamentous fungal counts. On the other hand, inoculation with Lactobacillus buchneri or Bacillus licheniformis increased the diversity of the fungal communities (p < 0.05), complicating the correlation between bacteria or fungi, reducing the relative abundance of Acetobacter and Paenibacillus in bacterial communities, and inhibiting the tendency of Monascus to replace Issatchenkia in fungal communities, thus delaying the aerobic spoilage process. Due to the prevention of the development of aerobic spoilage microorganisms, the silage injected with Lactobacillus buchneri or Bacillus licheniformis exhibited improved aerobic stability.

3.
Front Microbiol ; 15: 1358085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716171

RESUMO

The objective of this experiment was to investigate the effects of Lactobacillus plantarum and molasses on the nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora of alfalfa silage in sandy grasslands. The experimental treatments included control (CK), 106 CFU/g Lactobacillus plantarum (L), 5% molasses (M), and 106 CFU/g Lactobacillus plantarum + 5% molasses (LM). The nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora were determined after 14 days and 56 days of ensiling, respectively. The results showed that the addition of L, M, and LM reduced dry matter loss (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and increased water-soluble carbohydrates (WSC) and ether extract (EE) content, compared to the CK group. Meanwhile, more lactic acid (LA) and accelerated fermentation were observed, causing the pH value to drop below 4.5 in the L, M, and LM groups after 56 days of ensiling. The addition of L, M, and LM promoted lactic acid bacteria (LAB), and inhibited yeast. The addition of L significantly increased the content of acetic acid (AA). In terms of microflora, the addition of L, M, and LM made Firmicutes become the dominant bacterial phylum earlier, while Lactobacillus, Weissella, and Pediococcus had a higher abundance. According to the result of Pearson's correlation, there is a very significant negative correlation between pH value and Lactobacillus (P < 0.01) and a very significant positive correlation between pH value and Lactococcus, Enterobacter, Enterococcus, and Leuconostoc (P < 0.01), which may be inhibited by Lactobacillus under the decreased pH value. The results of the prediction of microbial genes indicated that the addition of M could enhance the carbohydrate metabolism and membrane transport metabolism, which may contribute to LA production by LAB metabolism. In general, L, M and LM all improved the fermentation quality and reduced the loss of nutrients to varying degrees, but considering the fermentation quality, the overall effects of M and LM were better than L. M and LM are recommended to be used as silage additives in the process of alfalfa silage in sandy grasslands to improve the quality.

4.
Front Microbiol ; 15: 1347293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686105

RESUMO

The mixture of whole-plant soybean and whole-plant corn silage (WPSCS) is nutrient balanced and is also a promising roughage for ruminants. However, few studies have investigated the changes in bacterial community succession in WPSCS inoculated with homofermentative and heterofermentative lactic acid bacteria (LAB) and whether WPSCS inoculated with LAB can improve fermentation quality by reducing nutrient losses. This study investigated the effect of Lactobacillus plantarum (L. plantarum) or Lactobacillus buchneri (L. buchneri) on the fermentation quality, aerobic stability, and bacterial community of WPSCS. A 40:60 ratio of whole-plant soybean corn was inoculated without (CK) or with L. plantarum (LP), L. buchneri (LB), and a mixture of LP and LB (LPB), and fermented for 14, 28, and 56 days, followed by 7 days of aerobic exposure. The 56-day silage results indicated that the dry matter content of the LP and LB groups reached 37.36 and 36.67%, respectively, which was much greater than that of the CK group (36.05%). The pH values of the LP, LB, and LPB groups were significantly lower than those of the CK group (p < 0.05). The ammoniacal nitrogen content of LB was significantly lower than that of the other three groups (p < 0.05), and the ammoniacal nitrogen content of LP and LPB was significantly lower than that of CK (p < 0.05). The acetic acid content and aerobic stability of the LB group were significantly greater than those of the CK, LP, and LPB groups (p < 0.05). High-throughput sequencing revealed a dominant bacteria shift from Proteobacteria in fresh forage to Firmicutes in silage at the phylum level. Lactobacillus remained the dominant genus in all silage. Linear discriminant analysis effect size (LEFSe) analysis identified Lactobacillus as relatively abundant in LP-treated silage and Weissella in LB-treated groups. The results of KEGG pathway analysis of the 16S rRNA gene of the silage microbial flora showed that the abundance of genes related to amino acid metabolism in the LP, LB, and LPB groups was lower than that in the CK group (p < 0.05). In conclusion, LAB application can improve the fermentation quality and nutritional value of WPSCS by regulating the succession of microbial communities and metabolic pathways during ensiling. Concurrently, the LB inoculant showed the potential to improve the aerobic stability of WPSCS.

5.
J Dairy Sci ; 107(6): 3631-3641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38278297

RESUMO

Two experiments were conducted to evaluate the effects of a genetically modified corn hybrid with α-amylase expressed in the kernel (AMY) on fermentation profile, aerobic stability, nutrient composition, and starch disappearance of whole-plant corn silage (WPCS) and earlage. Both hybrids, AMY and an isogenic corn hybrid (ISO), were grown in 10 replicated plots (5 for WPCS and 5 for earlage). Samples of each plot were collected at harvest, homogenized, and divided into 5 subsamples which were randomly assigned to 5 storage lengths (0, 30, 60, 90, and 120 d). Both datasets (WPCS and earlage), were analyzed separately as a completely randomized block design in a factorial arrangement of treatments, with a model including the fixed effects of hybrid, storage length, and their interaction, and the random effect of block. Minor differences on fermentation profile were observed between AMY and ISO for WPCS and earlage. An interaction between hybrid and storage length was observed for DM losses in WPCS, where losses were similar at 30, 60 and 90 d, but lower for AMY compared with ISO at 120 d. No effect of hybrid was observed on yeast and mold counts for WPCS or earlage. The aerobic stability of WPCS was greater for AMY than ISO. For earlage, AMY had greater DM losses and aerobic stability than ISO. An interaction between hybrid and storage length was observed for ammonia-N in both WPCS and earlage, where ammonia-N was similar at 0 d but greater for AMY than ISO throughout later storage lengths. A similar interaction was observed for water-soluble carbohydrates (WSC) concentrations in WPCS, where ISO had greater WSC than AMY at 0 d but was similar throughout later storage lengths. However, AMY earlage had a greater WSC concentration throughout storage length, but a lesser magnitude after ensiling. Starch concentration was greater for AMY than ISO in WPCS and earlage. Greater starch disappearances at 0 h and 6 h were observed for ISO in WPCS and earlage. Minor effects on fermentation profile, microbial counts, aerobic stability and nutrient composition suggests that AMY can be ensiled for prolonged periods with no concerns for undesirable fermentation or nutrient losses. However, in situ starch disappearance was lower for AMY compared with ISO.


Assuntos
Fermentação , Silagem , Amido , Zea mays , alfa-Amilases , alfa-Amilases/metabolismo , Amido/metabolismo , Plantas Geneticamente Modificadas , Animais
6.
3 Biotech ; 14(1): 10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084302

RESUMO

Alfalfa (Medicago sativa L.) is a vital source of forage protein for ruminants, yet its ensiling poses challenges due to high buffering capacity and low water-soluble carbohydrates (WSC). This study investigated the impact of sodium diacetate (SDA) on alfalfa silage quality and aerobic stability. SDA was applied at four different rates to wilted alfalfa on a fresh basis: 0 g/kg, 3 g/kg, 5 g/kg, and 7 g/kg, and silages were ensiled in laboratory-scale silos for 45 days, followed by 7 days of aerobic exposure. A 16S rRNA gene sequencing assay using GenomeLab™ GeXP was performed to determine the relationship between dominant isolated lactic acid bacteria species and fermentation characteristics and aerobic stability on silage. The results showed that Lentilolactobacillus brevis, Pediococcus pentosaceus and Enterococcus faecium were the most prevalent bacteria when silos were opened, whereas Weissella paramesenteroides, Bacillus cereus, B. megaterium and Bacillus spp. were most prevalent bacteria after 7 days of aerobic exposure. Dry matter, pH, and WSC content were not affected by SDA, but doses above 5 g/kg induced a homofermentative process, which increased lactic acid concentration and lactic acid to acetic acid ratio, decreased yeast count during aerobic exposure, and improved aerobic stability. These findings offer useful information for optimizing SDA usage in silage, assuring improved quality and longer storage, and thereby improving animal husbandry and sustainable feed practices.

7.
Front Plant Sci ; 14: 1305999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078097

RESUMO

Corn crop grown and ensiled at high temperature have lower water soluble carbohydrates (WSC), epiphytic lactic acid bacteria (LAB) population, lactic acid concentration, fermentation quality and aerobic stability. This study systematically investigated the effects of heterofermentative LAB (hetLAB), homofermentative LAB (homLAB), molasses and their mixture (MIX) on in-silo fermentation characteristics, chemical profiles, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate subfractions, in vitro digestibility (DMD), microbial count, and post-ensiling aerobic stability of whole crop corn silage during hot summer (30 to 45°C) condition. Corn hybrids (P30K08 and DK6789) were ensiled at targeted dry matter (DM) of 330 g/kg for 0, 3, 7, 21, and 150 days in 3 L silos, without additive (CCS) or treated with hetLAB (4×106 cfu/g Lactobacillus buchneri), homLAB (1×106 cfu/g of L. plantarum), molasses (3% of fresh forage) or MIX (half of individual doses of homLAB, hetLAB and molasses) additives. The CCS, homLAB, hetLAB, molasses, or MIX treated chopped material of each hybrid were ensiled in 16 replicate silos at a density of 260 kg of DM/m3. Compared to CCS, the additives significantly improved silage nutritional and fermentation quality, DM digestibility (in vitro), count of LAB, DM recovery and aerobic stability, and decreased counts of yeast and mold. Among the inoculants, the homLAB and MIX inoculated silages had greatest improvement in fermentation quality and nutritional value. The homLAB produced corn silage with the highest (P < 0.05) content of lactic acid, and soluble carbohydrates, and lowest contents of acetic acid, NH3-N and pH, demonstrating desirable and restricted in silo fermentation. On the other hand, the hetLAB inoculated silages had the greatest (P < 0.05) value of acetic acids, highlighting greater aerobic stability. Interestingly, the MIX silages followed the hetLAB in acetic acid value and homLAB in lactic acid value. Notably, without additive stable pH was not achieved during 21 days, with application of molasses, hetLAB and the MIX inoculants stable pH was achieved during 7 days, and with homLAB stable pH was achieved during the first 3 days of ensiling. The greatest numbers of viable LAB were recorded in homLAB (8.13 log cfu/g) and MIX (7.89 log cfu/g) inoculated silages, while the lowest for CCS (6.29 log cfu/g). The lowest yeast (1.48 log cfu/g) and mold (0.22 log cfu/g) were recorded for hetLAB inoculated silage. The greatest (P < 0.05) DM recovery was recorded for hetLAB (97.3%) and MIX (96.9%), and the lowest for the control silage (92.9%). All additives significantly improved the aerobic stability of corn silage, and the greatest value of >72 h was recorded for hetLAB and MIX inoculats, and the lowest for CSC (25 h). In conclusion, additives application can improve fermentation quality, nutritional value, DM recovery and aerobic stability of whole crop corn silage under hot summer conditions of the tropics. The MIX inoculant showed potential to improve in-silo fermentation, and aerobic stability at the same time, however, further investigation are required, particularly with respect of dose rate.

8.
Animals (Basel) ; 13(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37684996

RESUMO

The purpose of this experiment was to evaluate changes in fermentation quality, chemical composition, aerobic stability, anti-nutritional factors, and in situ disappearance characteristics of various protein-based total mixed rations. Soybean meal (control, non-fermented), fermented cottonseed meal (F-CSM), and fermented rapeseed meal (F-RSM) group were used to prepare the TMRs with corn, whole-plant corn silage, corn stalks, wheat bran, and premix. The test groups were inoculated at 50% moisture with Bacillus clausii and Saccharomyces cariocanus and stored aerobically for 60 h. The nylon-bag method was used to measure and study the rumen's nutrient degradation. The pH of all TMRs after 48 h of air exposure was below 4.8, whereas that of the F-CSM and control and F-RSM groups increased to 5.0 and >7.0, respectively. After 8 h of aerobic exposure, the temperatures of all groups significantly increased, and 56 h later, they were 2 °C higher than the surrounding air. The lactic acid concentration in the F-CSM and F-RSM groups increased after 12 h of aerobic exposure and then decreased. The acetic acid concentrations in the fermented groups decreased significantly with the increasing air-exposure time. The yeast population of the TMRs increased to more than 8.0 log10 CFU/g before 72 h of air exposure, followed by a decrease in the population (5.0 log10 CFU/g). After fermentation, the free gossypol (FG) concentration in F-CSM decreased by half and did not change significantly during the air-exposure period. Fermentation with probiotics also reduced the F-RSM's glucosinolate concentration, resulting in a more than 50% detoxification rate. Compared with the F-CSM and F-RSM groups, the effective degradation rates of nutrients in the control group were the lowest, and the dry matter (DM), crude protein (CP), natural detergent fiber (NDF), and acid detergent fiber (ADF) all degraded effectively at rates of 28.4%, 34.5%, 27.8%, and 22.8%, respectively. Fermentation with B. clausii and S. cariocanus could improve the fermentation quality and nutrient composition, decrease the anti-nutritional factor, and increase nutrient degradation of the TMR with cottonseed meal or rapeseed meal as the main protein source, thus achieving detoxification.

9.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37596068

RESUMO

AIMS: To determine the fermentation quality, aerobic stability, and chemical composition of Italian ryegrass silage prepared with Lactobacillus plantarum (LP), caproic acid (CA), and their combination during ensiling and feed-out phase. METHODS AND RESULTS: Six treatments: control (CON), LP, 0.15% caproic acid (LCA), 0.2% caproic acid (HCA), LCA + LP, and HCA + LP were employed for 30 days ensiling and an 8-days aerobic stability test. LP had similar pH value and lactic acid content with LCA + LP, while the contents of NH3-N and total VFAs in LCA + LP were significantly lower than those in LP and CON, and the fermentation quality of LCA + LP performed best among all silages. As air-exposure extended, contents of water-soluble carbohydrates (WSC), lactic, and acetic acids decreased, while pH, and NH3-N content increased significantly. The population of lactic acid bacteria gradually decreased in contrast to increased counts of aerobic bacteria and yeasts. Compared with LCA, 0.2% CA delayed the aerobic deterioration as judged by a slower increase in pH and high residual of WSC and lactic acid, and negligible ethanol content and anaerobe spores counts remained in HCA at the end of air exposure. Compared with CON (73 h), LP showed less aerobic stability (38 h), whereas HCA and HCA + LP prolonged aerobic stability for 210 and 152 h, better than LCA (109 h) and LCA + LP (146 h). CONCLUSIONS: Lactobacillus plantarum apparently improved the fermentation quality, and combined with CA exhibited greater efficiency in inhibiting undesirable microorganism during ensiling. CA at 0.2% optimally extended the aerobic stability.


Assuntos
Lactobacillus plantarum , Lolium , Caproatos , Fermentação , Silagem , Ácido Láctico , Água , Itália
10.
Animals (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444023

RESUMO

A major objective of this study is to identify factors influencing the quality of high-moisture total mixed rations (TMRs) for livestock feed and explore possible manipulations that can enhance their fermentation characteristics and stability in order to address the problem of poor aerobic stability. Therefore, the current study utilized infrared thermography (IRT) to assess the aerobic stability of water-added TMRs in the feed bunker. By manipulating the moisture content of freshly prepared TMRs at four different levels through water addition and subjecting it to storage at two consistent temperatures, significant correlations between IRT values (center temperature (CT) and maximum temperature difference (MTD)) and key parameters such as lactic acid bacteria, water-soluble carbohydrates, and TMR pH were established. The first and second principal components together accounted for 44.3% of the variation, with the first component's load influenced by IRT parameters, fermentation characteristics, and air exposure times, while the second component's load was influenced by dry matter content and lactic acid concentration. The results of these studies indicate the possibility that feeding methods can be optimized by identifying portions with higher CT or MTD data using IRT measurements just before feeding dairy cows in the field. As a result, increasing the use of IRT in feed management and preservation processes is projected to have a positive impact on animal productivity in the future.

11.
Arch Anim Nutr ; 77(3): 245-259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325929

RESUMO

Particle size and storage time are factors that can affect the fermentation quality and digestibility of rehydrated corn grain silage (RCS). The objective of this study was to evaluate the effect of particle size and storage time on chemical and microbiological characteristics, aerobic stability, and ruminal degradability of RCS. Corn grains were ground to pass through either a 3 mm (fine) or 9 mm (coarse) screen, rehydrated to 44.3% moisture and ensiled in 200 L polyethylene buckets. Samples were taken before and after ensiling at 10, 30, 90 and 200 days of storage to assess microbial counts, fermentation end products, and DM ruminal degradability. DM degradation was evaluated with incubation times of 0 (bag wash), 3, 6 and 48 h in 3 rumen-cannulated cows. The effective ruminal degradation (ERD) was calculated based on soluble fraction (A), degradable fraction (B) and passage rate (kp) defined as 7.0%/h: A + B [kd/(kd + kp)]. Aerobic stability was evaluated in silages after 200 days of storage, and pH and temperature were analysed up to 240 h of aerobic exposure. At 90 and 200 d of storage, fine RCS resulted in lower crude protein and greater NH3-N concentrations than coarse RCS. Coarsely ground RCS had a lower temperature at the beginning of storage than finely ground corn. Finely ground RCS had greater yeast counts and ethanol concentrations than coarsely ground RCS during storage time. Fine RCS was more susceptible to aerobic deterioration, reaching maximum temperature and pH values faster than coarse RCS. DM ruminal degradability increased over the storage time. The particle size of the rehydrated corn grain silage did not affect the kd values after 90 d of storage, while for the ERD, a long fermentation time was necessary (200 d). Considering the fermentation characteristics and the kinetics of ruminal DM degradation, fine grinding is recommended for short storage periods and coarse grinding may be a strategy to increase the rate of grinding when the storage period is greater than 200 d.


Assuntos
Ração Animal , Silagem , Feminino , Animais , Bovinos , Silagem/análise , Ração Animal/análise , Zea mays , Fermentação , Tamanho da Partícula , Amido/metabolismo , Dieta/veterinária , Saccharomyces cerevisiae , Digestão , Rúmen/metabolismo
12.
Animals (Basel) ; 13(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899777

RESUMO

This experiment investigated the effects of lactic acid bacteria and cellulase on the fermentation quality, in vitro digestibility, and aerobic stability of Flammulina velutipes spent mushroom substrate silage (F-silage) and Pleurotus eryngii spent mushroom substrate silage (P-silage). Silage treatments included groups without any additives (control), with lactic acid bacteria (L), with cellulase (E), and with lactic acid bacteria and cellulase (M). Data analysis was performed using independent sample t-test and analysis of variance. After 45 days of ensiling, the pH in F-silage and P-silage from the L, E, and M groups were lower than those in the control group (p < 0.05). The pH, acetic acid (AA), and propionic acid (PA) levels in P-silage were lower than those in F-silage, and the LA content in P-silage was higher than that in F-silage (p < 0.05). Compared with the control, the E treatment increased in vitro neutral detergent fibre digestibility (IVNDFD) and in vitro acid detergent fibre digestibility (IVADFD) in F-silage and P-silage (p < 0.05). The aerobic stability of F-silage inoculated with L increased (p < 0.05) by 24 h compared to the control. The aerobic stability of P-silage inoculated with M increased (p < 0.05) by 6 h compared to the control. The improvement in fermentation quality and aerobic stability is extremely large in terms of applying M in F-silage and P-silage. The E is effective in improving the in vitro digestibility of P-silage. The research results provide a theoretical basis for the production of high-quality spent mushroom substrate fermented feed.

13.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838477

RESUMO

Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.

14.
Front Microbiol ; 13: 1063914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483209

RESUMO

The present study investigated the dynamic profiles of fermentation quality, aerobic stability, and the bacterial community of paper mulberry silage inoculants without (Control) or with Lactiplantibacillus plantarum (LP), Lactiplantibacillus brevis (LB), or their combination (LPLB), which was screened from naturally fermented paper mulberry. The results showed that the inoculated treatments had significantly reduced neutral detergent fiber, water-soluble carbohydrates, and ammoniacal nitrogen contents compared with the control after 60 days of ensiling (the decreased proportion of LP, LB, and LPLB treatments ranged from 7.33%-11.23%, 9.60%-21.44%, and 21.53%-29.23%, respectively, p < 0.05). The pH value of the LP and LB treatments was significantly lower than that of the control after 60 days of ensiling (4.42 and 4.56 vs. 4.71, p < 0.05). The LP treatment promoted lactic acid accumulation and LAB number compared with the control (66.59% vs. 54.12% and 8.71 log10 CFU/g vs. 8.52 log10 CFU/g, respectively, p < 0.05), and the LB and LPLB treatments inhibited the growth of yeast and mold after 14 days of fermentation. After 5 days of aerobic exposure, both the LB and LPLB treatments increased the aerobic stability time and acetic acid content (from 29 to 75 h and 16.14%-48.72%, respectively, p < 0.05), inhibited the growth of yeast and mold, and did not detect butyric acid. Additionally, the bacteria community of each treatment was dominated by Aerococcus on day 3 of ensilage (accounting for 54.36%-69.31%), while the inoculated treatments reduced the abundance of Aerococcus on day 60 (from 59.73% to 85.16%, p < 0.05), and Lactobacillus became the dominant genus (accounting for 54.57%-70.89%). Inoculation of L. plantarum effectively maintained the acidic environment at the end of the fermentation system by maintaining the abundance of Lactobacillus, maximizing the preservation of dry matter and protein, and reducing protein corruption. Inoculation of L. brevis alone or in combination with L. plantarum significantly inhibited the growth of mold and improved the aerobic stability of paper mulberry silage.

15.
Front Microbiol ; 13: 1034198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523820

RESUMO

The presence of undesirable microorganisms in silage always leads to poor fermentation quality and low aerobic stability. Pyroligneous acid (PA), a by-product of biochar production, is known to have strong antimicrobial and antioxidant activities. To investigate the effects of PA on fermentation characteristics, aerobic stability, and microbial communities, Napier grass was ensiled with or without 1 and 2% PA for 30 days and then aerobically stored for 5 days. The results showed that PA application decreased (P < 0.01) the pH value, ammonia nitrogen content, and number of undesirable microorganisms (coliform bacteria, yeasts, and molds) after 30 days of ensiling and 5 days of exposure to air. The temperature of the PA-treated group was stable during the 5-day aerobic test, which did not exceed room temperature more than 2°C. The addition of PA also enhanced the relative abundance of Lactobacillus and reduced that of Klebsiella and Kosakonia. The relative abundance of Candida was higher in PA-treated silage than in untreated silage. The addition of PA decreased the relative abundance of Kodamaea and increased that of Monascus after 5 days of exposure to air. The abundances of Cladosporium and Neurospora were relatively high in 2% PA-treated NG, while these genera were note observed in the control group. These results suggested that the addition of PA could improve fermentation characteristics and aerobic stability, and alter microbial communities of silage.

16.
Transl Anim Sci ; 6(4): txac144, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36425846

RESUMO

This study evaluated the effects of novel silage inoculants containing lactic acid bacteria (LAB) and fibrolytic enzymes on ensiling, aerobic stability (AS), and the performance of growing beef cattle. Whole-plant corn forage was either uninoculated (CON) or inoculated with a mixture of LAB containing (cfu g-1 fresh forage) 1.5 × 105 L. hilgardii (CNCM I-4785), 1.5 × 105 L. buchneri (NCIMB 40788) and 1.0 × 105 P. pentosaceus (NCIMB 12455) for a total of 4.0 × 105 cfu g-1 fresh forage LAB (IB), or a combination of IB plus fibrolytic enzymes (xylanase + ß-glucanase) (IC). All treatments were ensiled in mini-silos, whereas CON and IC were also ensiled in silo bags for the growth performance study. Total bacteria (TB) counts were lower (P = 0.02) for IC than CON after 14 d of ensiling, whereas TB counts of IC and IB were greater (P ≤ 0.01) than CON after 60 d of ensiling in mini-silos. The LAB in IC and IB ensiled in mini-silos were greater than CON on d 60 (P ≤ 0.01) and 90 (P ≤ 0.001) of ensiling and after 3 d (P ≤ 0.01) of aerobic exposure (AE). Silage pH of IC ensiled in silo bags was lower than CON on d 3 (P < 0.01), 7 (P < 0.001), and 14 (P = 0.02) of AE. Yeast counts were lower for IC than CON in terminal silage (P < 0.001), and after 3 (P < 0.001) and 7 d (P < 0.01) of AE. Acetate (AC) concentrations were higher (P ≤ 0.02) for IC than CON throughout AE, whereas lactate (LA) concentrations of IC were greater than CON on d 3 (P < 0.001), 7 (P < 0.01), and 14 (P < 0.001) of AE. Greater AC concentration and lower yeast counts resulted in greater (P < 0.001) stability for IC ensiled in silo bags than CON after 14 d of AE. Growth performance of steers was similar (P > 0.05) as the nutrient composition of silage was similar across diets. Improved AS of IC could potentially have a greater impact on DMI, production efficiency, and growth performance in large-scale commercial feedlot operations where silage at the silo face may be exposed to air for longer periods of time.

18.
Front Microbiol ; 13: 938153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118219

RESUMO

Silage exposed to air is prone to deterioration and production of unpleasant volatile chemicals that can seriously affect livestock intake and health. The aim of this study was to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and a combination of LP and LB (PB) on the quality, microbial community and volatile chemicals of Leymus chinensis silage at 0, 4, and 8 days after aerobic exposure. During aerobic exposure, LP had higher WSC and LA contents but had the least aerobic stability, with more harmful microorganisms such as Penicillium and Monascus and produced more volatile chemicals such as Isospathulenol and 2-Furancarbinol. LB slowed down the rise in pH, produced more acetic acid and effectively improved aerobic stability, while the effect of these two additives combined was intermediate between that of each additive alone. Correlation analysis showed that Actinomyces, Sphingomonas, Penicillium, and Monascus were associated with aerobic deterioration, and Weissella, Pediococcus, Botryosphaeria, and Monascus were associated with volatile chemicals. In conclusion, LB preserved the quality of L. chinensis silage during aerobic exposure, while LP accelerated aerobic deterioration.

19.
J Agric Food Chem ; 70(38): 12232-12248, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103255

RESUMO

In this study, the complex volatilome of maize silage samples conserved for 229 d, inoculated with Lentilactobacillus buchneri (Lbuc) and Lacticaseibacillus paracasei (Lpar), is explored by means of advanced fingerprinting methodologies based on comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. The combined untargeted and targeted (UT) fingerprinting strategy covers 452 features, 269 of which were putatively identified and assigned within their characteristic classes. The high amounts of short-chain free fatty acids and alcohols were produced by fermentation and led to a large number of esters. The impact of Lbuc fermentation was not clearly distinguishable from the control samples; however, Lpar had a strong and distinctive signature that was dominated by propionic acid and 1-propanol characteristic volatiles. The approach provides a better understanding of silage stabilization mechanisms against the degradative action of yeasts and molds during the exposure of silage to air.


Assuntos
Lacticaseibacillus paracasei , Silagem , 1-Propanol , Aerobiose , Ácidos Graxos não Esterificados , Lactobacillus , Propionatos/análise , Silagem/análise , Zea mays
20.
Front Microbiol ; 13: 974925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110299

RESUMO

In this study, lactic acid bacteria strains (HCS-01, HCS-05, HCS-07, HCW-08, and HCW-09) derived from the gastrointestinal tract of Hainan black goat were evaluated for their antioxidant capacity in vitro, and the lactic acid bacteria with strong antioxidant capacity were screened for application to improve the aerobic stability of total mixed ration (TMR). The results showed that all the tested lactic acid bacteria had a certain tolerance to hydrogen peroxide. By comprehensively comparing the scavenging abilities of fermentation supernatants, whole cell bacterial suspensions and cell contents of five lactic acid bacteria strains to 2,2-diphenyl-1-picrylhydrazine (DPPH), hydroxyl radicals and superoxide anions, and their antioxidant enzyme activity, it was found that Lactobacillus fermentum HCS-05 and Lactobacillus plantarum HCW-08 have the strongest comprehensive antioxidant capacity, and their scavenging capacity for various free radicals has reached more than 60%. Using strains HCS-05, HCW-08 and laboratory-preserved Lactobacillus plantarum HDX1 fermented TMR, the fermentation quality and aerobic stability of the feed after 60 days of fermentation were significantly higher than those of the blank treatment group. The effect of mixed strains HCS-05 and HCS-08 for TMR fermentation was the best (P < 0.05). At the same time, the fermentation effect of Lactobacillus plantarum HDX1 on TMR was significantly lower than that of the selected lactic acid bacteria from the gastrointestinal tract of Hainan black goats (P < 0.05). The results show that the test strain can significantly improve the aerobic stability of the fermented feeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA