Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Adv Sci (Weinh) ; : e2407223, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373699

RESUMO

Viruses are abundant and ubiquitous in soil, but their importance in modulating greenhouse gas (GHG) emissions in terrestrial ecosystems remains largely unknown. Here, various loads of viral communities are introduced into paddy soils with different fertilization histories via a reciprocal transplant approach to study the role of viruses in regulating greenhouse gas emissions and prokaryotic communities. The results showed that the addition of viruses has a strong impact on methane (CH4) and nitrous oxide (N2O) emissions and, to a minor extent, carbon dioxide (CO2) emissions, along with dissolved carbon and nitrogen pools, depending on soil fertilization history. The addition of a high viral load resulted in a decrease in microbial biomass carbon (MBC) by 31.4%, with changes in the relative abundance of 16.6% of dominant amplicon sequence variants (ASVs) in comparison to control treatments. More specifically, large effects of viral pressure are observed on some specific microbial communities with decreased relative abundance of prokaryotes that dissimilate sulfur compounds and increased relative abundance of Nanoarchaea. Structural equation modeling further highlighted the differential direct and indirect effects of viruses on CO2, N2O, and CH4 emissions. These findings underpin the understanding of the complex microbe-virus interactions and advance current knowledge on soil virus ecology.

2.
Environ Pollut ; 362: 124937, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260544

RESUMO

The mcr-type gene encodes the main plasmid-mediated mechanism of colistin resistance and has been reported in several bacterial species obtained from different sources. Anthropogenic activities in the environment favor the evolution of antimicrobial resistance. Indeed, mcr-1-positive Escherichia coli strains were susceptible to non-polymyxins antimicrobials, but now emerging as multidrug-resistant (MDR) lineages. In this regard, hundreds of surface water and agricultural soil samples were screened for the presence of E. coli carrying the mcr-type genes and mcr-1-positive strains were subjected to in-depth genomic analysis. Almost all colistin-resistant strains were classified as MDR, highlighting those obtained from soils that showed resistance to extended-spectrum cephalosporins and carbapenems. International and high-risk clones of E. coli were identified, with ST10 and ST1720 shared between water and soil samples. Resistome analysis showed a broad resistome (AMR, metal tolerance, and biocide resistance). The mcr-1.1 and mcr-1.26 allelic variants were detected on IncX4 and IncI2 plasmids. Curiously, mcr-1-positive E. coli strains from agricultural soils harbored plasmid-mediated blaCTX-M-1, blaCTX-M-8, or blaKPC-2 genes. Virulome analysis demonstrated traits of a high putative virulence potential, with the presence of extraintestinal pathogenic E. coli. Comparative analysis revealed the persistence and dissemination of plasmid-mediated antimicrobial resistance genes in genetically diversity E. coli strains at the human-animal-environmental interface. These findings demonstrate a possible emerging AMR trend with the convergence of resistance to colistin and broad-spectrum ß-lactams in environmental-derived E. coli strains.

3.
J Hazard Mater ; 479: 135561, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244987

RESUMO

Zn isotope can help to clarify the migration, transformation and source contribution of Zn in farmland soil. However, the research on Zn isotope value of different end members in farmland soil is incomprehensive, and the variation of Zn isotope in farmland soil caused by different factors in different polluted areas is unclear, which hinders the usage of Zn isotope tracing method in farmland soil. Thus, a Pb-Zn mine polluted farmland in southwest China was selected as the research object and the end elements and farmland soil samples with different Zn contamination were systematically collected to analyse Zn content, fraction and isotopic composition. The effects of different end members and processes of eluviation, organic adsorption and inorganic adsorption on Zn isotopic composition in soil were analysed, and the relationship between these three processes and environmental variables was analysed to clarify the change mechanism. The results can enrich the fractionation mechanism of Zn isotopes, expand the application of Zn isotope in tracing the sources, and provide geochemical evidence for remediation of Zn pollution in farmland soil.

4.
iScience ; 27(9): 110804, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39286506

RESUMO

Soil salinization, exacerbated by climate change, poses significant threats to agricultural productivity, land restoration, and ecosystem resilience. This study reviews current knowledge on plant-soil interactions as a strategy to mitigate soil salinization induced by climate change, focusing on their role in soil salinity dynamics and tolerance mechanisms. The review examines how alterations in hydrological and temperature regimes impact soil salinity and how plant-soil mechanisms-such as salt exclusion, compartmentalization, and plant-microbe interactions-contribute to salinity mitigation. This, in turn, enhances soil quality, fertility, microbial diversity, and ecosystem services. The analysis identifies a growing body of research and highlights key themes and emerging trends, including drought, microbial communities, and salt tolerance strategies. This study underscores the critical role of plant-soil interactions in sustainable salinity management and identifies knowledge gaps and future research priorities, advocating for plant-soil interactions as a crucial pathway for improving ecosystem resilience to salinity stress amid climate change.

5.
Environ Sci Technol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252669

RESUMO

The shift toward sustainable agriculture involves replacing inorganic fertilizers with organic alternatives like biosolids. However, concerns arise over emerging contaminants, such as microplastics (MPs), which remain largely unregulated. Despite their common use in Australia, the transfer of MPs from biosolids to agricultural soils remains largely unknown. Herein, we have investigated the abundance, characteristics, and transport of MPs resulting from biosolids application in two Queensland agricultural sites. MP concentrations were significantly higher in biosolid-amended soils (average of 1137 MPs/kg) than in reference sites (average of 36 MPs/kg), correlating with the volume, time since application, and frequency of biosolids application. MPs > 25 µm were predominantly polyethylene, polypropylene, and poly(methyl methacrylate) fragments (up to 85%). Fibers constitute only 15-30% of MPs and mainly in larger sizes (average 1011 µm), whereas fragments (average 188 µm) and beads (average 72 µm) had smaller size ranges. Despite analytical challenges using Raman spectroscopy, detected smaller MPs (1-25 µm) were fragments composed of polyethylene, polypropylene, and poly(vinyl alcohol). This study provides the first report of MPs down to 1 µm in Australian agricultural soils. Our findings suggest a need to assess the long-term impact of MPs in biosolids on soil health and food safety. We call on policymakers to consider the implementation of effective MP source control strategies and the development of guidelines for acceptable biosolids application rates.

6.
Environ Res ; 261: 119750, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39111649

RESUMO

Nonylphenol (4-NP) has significant adverse effects on the male reproductive system. 4-NP is commonly used in agriculture as a plasticizer and pesticide emulsifier. In the current study, two soil samples with different textures were collected to evaluate the impact of soil components on the environmental existence of 4-NP among soil aggregates. It was found that the presence of soil POM resulted in 4-NP exhibiting a significantly polarized distribution in soil aggregates, instead of the expected increase in content with decreasing particle size. High levels of organic matter and metal oxides result in a high carrying capacity of small aggregates for 4-NP in both soil textures, while POM results in a higher carrying capacity of large aggregates for 4-NP in clay soil. Another important finding is that the existence of 4-NP in soil was regulated by the percentage of aggregates. The results of contribution shown that although small aggregates in sand presented stronger 4-NP carrying capacity, whereas 4-NP was mainly distributed in large aggregates in sand. For clay soil, 4-NP was predominantly located in small aggregates with the 4-NP contributions of small aggregates amounting to 63.17%, despite the highest carrying capacity of 4-NP was observed in large aggregates. These results provide a theoretical basis to investigate the transport and transformation of 4-NP in the soil environment.


Assuntos
Fenóis , Poluentes do Solo , Solo , Solo/química , Poluentes do Solo/análise , Fenóis/análise , Tamanho da Partícula , Monitoramento Ambiental
7.
J Agric Food Chem ; 72(36): 19957-19965, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213533

RESUMO

Achieving consensus about the rhizosphere effect on soil antibiotic resistomes is challenging due to the variability in antibiotic concentrations, sources, and the elusory underlying mechanisms. Here, we characterized the antibiotic resistomes in both the rhizosphere and bulk soils of soybean plants grown in environments with varying levels of antibiotic contamination, using sulfamethoxazole (SMX) as a model compound. We also investigated the factors influencing resistome profiles. Soybean cultivation altered the structure of antibiotic-resistant genes (ARGs) and increased their absolute abundance. However, the rhizosphere effect on the relative abundance of ARGs was dependent on SMX concentrations. At low SMX levels, the rhizosphere effect was characterized by the inhibition of antibiotic-resistant bacteria (ARBs) and the promotion of sensitive bacteria. In contrast, at high SMX levels, the rhizosphere promoted the growth of ARBs and facilitated horizontal gene transfer of ARGs. This novel mechanism provides new insights into accurately assessing the rhizosphere effect on soil antibiotic resistomes.


Assuntos
Antibacterianos , Bactérias , Glycine max , Rizosfera , Microbiologia do Solo , Sulfametoxazol , Sulfametoxazol/farmacologia , Sulfametoxazol/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Glycine max/microbiologia , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Solo/química , Farmacorresistência Bacteriana/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/metabolismo
8.
Chemosphere ; 364: 143150, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181458

RESUMO

Agricultural soils are currently at risk of pollution from toxic heavy metal(loid)s (HMs) due to human activities, resulting in the excessive accumulation of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) in food plants. This poses significant risks to human health. Exogenous selenium (Se) has been proposed as a potential solution to reduce HMs accumulation in plants. However, there is currently a lack of comprehensive quantitative overview regarding its influence on the accumulation of HMs in plants. This study utilized meta-analysis to consolidate the existing knowledge on the impact of Se amendments on plant HMs accumulation from contaminated soil media. The present study conducted a comprehensive meta-analysis on literature published prior to December 2023, investigating the effects of different factors on HMs accumulation by meta-subgroup analysis and meta-regression model. Se application showed an inhibitory effect on plant uptake of Hg (28.9%), Cr (25.5%), Cd (25.2%), Pb (22.0%), As (18.3%) and Cu (6.00%) concentration. There was a significant difference in the levels of HMs between treatments with Se application and those without Se application in various plant organs. The percentage changes in the HMs contents of the organs varied from -13.0% to -22.0%. Compared with alkaline soil (pH > 8), Se application can reduce more HMs contents in plants in acidic soil (pH < 5.5) and neutral soil (pH = 5.5-8). For daily food plants(e.g. rice, wheat and corn), Se application can reduce HMs contents in Oryza sp., Triticum sp. and Zea sp., ranging from 14.0-20.0%. Our study emphasizes that the impact of Se on reducing HMs depends on the single or combined effects of Se concentration, plant organs, plant genera and soil pH condition.


Assuntos
Metais Pesados , Plantas , Selênio , Poluentes do Solo , Metais Pesados/análise , Metais Pesados/metabolismo , Selênio/análise , Selênio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Plantas/metabolismo , Solo/química , Arsênio/metabolismo , Arsênio/análise
9.
Ecotoxicol Environ Saf ; 283: 116825, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094455

RESUMO

To better understand the impact of long-term irrigation practices on arsenic (As) accumulation in agricultural soils, 100 soil samples from depths of 0-20 cm were collected from the Datong basin, where the As-contaminated groundwater has been used for irrigation for several decades. Soil samples were analyzed for major elements, trace elements, and As, Fe speciation. Results reveal As content ranging from 4.00 to 14.5 mg/kg, an average of 10.2 ± 2.05 mg/kg, consistent with surveys conducted in 1998 and 2007. Arsenic speciation ranked in descending order as follows: As associated with silicate minerals (AsSi, 29.70 ± 7.53 %) > amorphous Fe-minerals associated As (AsFeox1, 26.40 ± 3.27 %) > crystalline Fe-minerals associated As (AsFeox2, 24.02 ± 4.60 %) > strongly adsorbed As (AsSorb, 14.29 ± 2.81 %) > As combined with carbonates and Fe-carbonates (AsCar, 2.30 ± 0.44 %) > weakly adsorbed As (AsDiss, 2.59 ± 1.00 %). The anomalous negative correlation between As and Fe content reflects the primary influence of soil provenance. Evidence from major element compositions and rare earth element patterns indicates that total As and Fe contents in soils are controlled by parent materials, exhibiting distinct north-south differences (As: higher levels in the north, lower levels in the south; Fe: higher levels in the south, lower levels in the north). Evidence from the Chemical Index of Alteration (CIA) and As/Ti ratio suggests that chemical weathering has led to As enrichment in the central basin. Notably, relationships such as AsDiss/Ti, AsSorb/Ti with CIA and total Fe content indicate significant influences of irrigation practices on adsorbed As (both weakly and strongly adsorbed) contents, showing a pattern of higher levels in the central basin and lower levels in the Piedmont. However, total As content remained stable after long-term irrigation, potentially due to the re-release of accumulated As via geochemical pathways during non-irrigated periods. These findings demonstrate that the soil systems can naturally remediate exogenous As contamination induced by irrigation practices. Quantitative assessment of the balance between As enrichment and re-release in soil systems is crucial for preventing soil As contamination, highlighting strategies like water-saving techniques and fallow periods to manage As contamination in agricultural areas using As-contaminated groundwater for irrigation.


Assuntos
Irrigação Agrícola , Arsênio , Monitoramento Ambiental , Água Subterrânea , Poluentes do Solo , Solo , Irrigação Agrícola/métodos , Arsênio/análise , Poluentes do Solo/análise , Solo/química , Água Subterrânea/química , Ferro/análise , Ferro/química , Agricultura/métodos , Adsorção , Minerais/análise , Minerais/química
10.
Environ Sci Pollut Res Int ; 31(42): 54738-54752, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215926

RESUMO

Metals such as Zn and Cu present in sewage sludge applied to agricultural land can accumulate in soils and potentially mobilise into crops. Sequential extractions and X-ray absorption spectroscopy results are presented that show the speciation changes of Cu and Zn sorbed to anaerobic digestion sludge after mixing with soils over three consecutive 6-week cropping cycles, with and without spring barley (Hordeum vulgare). Cu and Zn in digested sewage sludge are primarily in metal sulphide phases formed during anaerobic digestion. When Cu and Zn spiked sludge was mixed with the soil, about 40% of Cu(I)-S phases and all Zn(II)-S phases in the amended sludge were converted to other phases (mainly Cu(I)-O and outer sphere Zn(II)-O phases). Further transformations occurred over time, and with crop growth. After 18 weeks of crop growth, about 60% of Cu added as Cu(I)-S phases was converted to other phases, with an increase in organo-Cu(II) phases. As a result, Cu and Zn extractability in the sludge-amended soil decreased with time and crop growth. Over 18 weeks, the proportions of Cu and Zn in the exchangeable fraction decreased from 36% and 70%, respectively, in freshly amended soil, to 28% and 59% without crop growth, and to 24% and 53% with crop growth. Overall, while sewage sludge application to land will probably increase the overall metal concentrations, metal bioavailability tends to reduce over time. Therefore, safety assessments for sludge application in agriculture should be based on both metal concentrations present and their specific binding strength within the amended soil.


Assuntos
Agricultura , Cobre , Esgotos , Poluentes do Solo , Solo , Zinco , Esgotos/química , Solo/química , Produtos Agrícolas , Hordeum/crescimento & desenvolvimento
11.
Sci Rep ; 14(1): 18667, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134701

RESUMO

The coal gangue dump may introduce heavy metal(oid)s (HMs) into surrounding agricultural soils, posing potential health risks to nearby communities. This study evaluated heavy metal(oid) pollution in agricultural soils adjacent to a gangue dump at an abandoned coal mine in Chongqing, Southwest China. The concentrations of HMs (As, Cd, Cr, Cu, Ni, Pb, and Zn) were quantified using ICP-MS, and the contamination status was assessed using the Geoaccumulation Index (Igeo), Contamination Factor (CF), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI). Heavy metal(oid) contamination was detected in soils across a depth of 0-30 cm, particularly pronounced in the topsoil layer (0-10 cm and 10-20 cm depths). Cu emerged as the predominant contaminant across all examined depths, with average Igeo values of 1.20, 1.21, and 1.16 for the 0-10 cm, 10-20 cm, and 20-30 cm depths, respectively, indicating moderate contamination. The CF for Cu was 3.55, 3.55, and 3.50 for these respective depths, classifying it as considerable contamination. The PLI values ranged from 1.61 to 2.50, with a mean value of 2.12, indicating overall contamination. The ecological risk assessment indicated that the soil's ecological risk was low at all depths. Cd was the major contributor to the RI, accounting for 48%, 47%, and 42% at 0-10 cm, 10-20 cm, and 20-30 cm depths, respectively. Health risk assessments revealed significant non-carcinogenic risks to children (mean HI = 1.30) and unacceptable carcinogenic risks to both adults and children (mean TCR = 3.26 × 10-4 and 1.53 × 10-3, respectively). This study underscores the critical need for comprehensive risk assessments using multiple indicators to prioritize remediation efforts for HMs, providing a scientific basis for effective environmental management and public health protection in the Three Gorges Reservoir Area.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , China , Poluentes do Solo/análise , Humanos , Medição de Risco , Monitoramento Ambiental/métodos , Agricultura , Solo/química , Poluição Ambiental/análise , Poluição Ambiental/efeitos adversos , Carvão Mineral/análise
12.
Environ Pollut ; 360: 124630, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079655

RESUMO

As an emergent pollutant, microplastics (MPs) are becoming prevalent in the soil environment. However, the characteristics of MPs and the response of microbial communities to the abundance of MPs in agricultural soils in West China still need to be elucidated in detail. This study utilized the Agilent 8700 Laser Direct Infrared (LDIR) to analyze the characteristics of small-sized MPs (20-1000 µm) in soils from un-mulched and mulched agricultural fields in West China, and illustrated their correlation with microbial diversity. The results revealed a higher abundance of MPs in mulched soil ((4.12 ± 2.13) × 105 items kg-1) than that in un-mulched soil ((1.04 ± 0.26) × 105 items kg-1). The detected MPs were dominated by fragments, 20-50 µm and Polyamide (PA). High-throughput sequencing analysis indicated that alpha diversity (Chao1 and Shannon indices) in the plastisphere was lower compared to that in soil, and varied significantly with MPs abundance in soil. As the abundance of MPs increased, the proportion of soil about the degradation of organic matte and photoautotrophic taxa increased, which showed enrichment in the plastisphere. Functional predictions further indicated that MPs abundance affected potential soil functions, such as metabolic pathways associated with the C and N cycling. The plastisphere showed higher functional abundance associated with organic matter degradation, indicating higher potential health risks compared to soil environments. Based on the RDA analyses, it was determined that environmental physicochemical properties and MPs abundance had a greater impact on fungal communities than on bacterial communities. In general, the abundance of MPs affected the microbial diversity composition and potentially influenced the overall performance of soil ecosystems. This study offers empirical data on the abundance of MPs in long-term mulched agricultural fields and new insights for exploring the ecological risk issues associated with MPs.


Assuntos
Agricultura , Monitoramento Ambiental , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , China , Poluentes do Solo/análise , Microplásticos/análise , Solo/química , Bactérias/classificação , Bactérias/genética , Microbiota , Fungos
13.
Sci Total Environ ; 949: 174775, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009160

RESUMO

Biochar (BC) granulation, yielding BC-based spheres, serves as an eco-friendly, cost-effective and efficient adsorbent for the removal of potential toxic elements (PTEs) from contaminated agricultural soils. The effect of BC-based spheres on mineral nutrients while effectively removing PTEs from contaminated soils is worth investigating. In this study, we utilized natural clay minerals, magnetic minerals and BC to produce water-hardened magnetic composite biochar sphere (WMBCS) that was capable of removing PTEs from composite contaminated agricultural soils. We explored the effect of WMBCS on minerals (Al, Ca, Fe, Mn, Na, Mg, Si, K, P, NH4+, and NO3-) in the removal of soil PTEs. WMBCS was a mineral nutrient-rich, recyclable, alkaline BC-based sphere that removes Cd (23.07-29.20 %), Pb (27.68-31.10 %), and As (26.17-37.48 %) from soils after three regeneration cycles. The effect of WMBCS on mineral nutrients varies depending on element type, BC and soil type. Compared to water-hardened magnetic composite phosphate modified biochar spheres (WMPBCS), water-hardened magnetic composite unmodified biochar spheres (WMUBCS) had more significant effect on Ca, Mg, Mn, Al and NH4+ in alkaline soils, but a greater effect on Ca, Mg, Mn, Fe and NO3- in acidic soils. Additionally, WMBCS displayed a more pronounced impact on mineral nutrients in alkaline soils than in acidic soils. The application of WMBCS reduced the accumulation of PTEs in wheat (18.40-84.70 %) and rice (27.96-88.66 %), but significantly inhibited seed germination and altered the uptake of mineral nutrients by seedlings due to its effects on soil physicochemical properties and mineral nutrient dynamics. Overall, WMBCS is suitable as a potential amendment for the remediation of soils co-contaminated with Cd, As, and Pb, but its effects on mineral nutrients cannot be overlooked, particularly in agricultural soils.


Assuntos
Agricultura , Carvão Vegetal , Minerais , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Solo/química , Minerais/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Adsorção
14.
MethodsX ; 13: 102798, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39007027

RESUMO

The analysis of soil organic matter (OM), total carbon (TC), and total nitrogen (TN) using traditional methods is quite time-consuming and involves the use of hazardous chemical reagents. Absorbance spectroscopy, especially near-infrared (NIR), is becoming more popular for soil analysis. This method requires little sample preparation, no chemicals, and a single spectral analysis to evaluate soil properties. Thus, this research aimed to develop an NIR spectroscopy method for the analysis of OM, TC, and TN in agricultural soils. These findings can provide a good concept of using PLS regression with NIR techniques. The method is as follows:•Topsoil (0-20 cm) samples were collected from various agricultural fields. OM, TC, and TN were analyzed using traditional methods and NIR spectroscopy.•NIR spectra were obtained using an FT-NIR spectrometer, original spectral including with Savitzky-Golay smoothing, standard normal variate (SNV) and multiplicative scatter correction (MSC) preprocessing method were used to create a predicted model through Partial Least Squares (PLS) regression with 65 % calibration, and the rest 35 % for validation.•The results showed significant relationships between measured soil properties (SOM and TC) and NIR absorbance spectra in agricultural soil (R 2 of calibration and validation higher than 0.80).

15.
Sci Total Environ ; 948: 174667, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38992384

RESUMO

Plastic contamination in agricultural soils has become increasingly evident. Plastic mulching films are widely used in agricultural practices. However, the increased use of biodegradable plastics has, to some extent, replaced their non-degradable counterparts. The fragmentation of plastics generates microplastics (MPs), posing risk to soil functions and organisms. In this study the effects of low-density polyethylene microplastics (PE-MP) and polybutylene adipate terephthalate biodegradable microplastics (PBAT-BD-MP) originating from mulching films on the earthworm Eisenia andrei were studied. The earthworms were exposed to seven concentrations (0, 0.005, 0.05, 0.1, 0.5, 1, and 5 % w/w) based on environmentally relevant levels and worst-case scenarios on soil contamination. Survival, growth, reproduction, and biomarkers for oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), and lipid peroxidation (LPO)] were analysed. Additionally, the Integrated Biomarker Response Index (IBR) was calculated to assess the overall oxidative stress status of the earthworms. Results showed that PE-MP exposure slightly decreased the biomass of the earthworms towards higher concentrations, whereas PBAT-BD-MPs induced growth at lower concentrations. MPs did not have a significant effect on Eisenia andrei reproduction; however, a slight negative trend was observed in juvenile production with increasing PE-MP concentrations. Both PE-MP and PBAT-BD-MP affected antioxidant system, PE-MPs with changes in CAT and GR levels and PBAT-BD-MPs inducing effects on SOD and LPO levels. Additionally, both MPs exhibited effects on soil parameters, resulting in increased soil pH and water-holding capacity at 5 % concentration. Changes in soil parameters can further affect soil organisms such as earthworms. This study provides understanding of the ecotoxicological effects of conventional and biodegradable microplastics on the earthworm Eisenia andrei. It also shows that MP particles of both conventional and biodegradable mulching films induce oxidative stress, considered as an early-warning indicator for adverse ecological effects, in environmentally relevant concentrations.


Assuntos
Microplásticos , Oligoquetos , Estresse Oxidativo , Reprodução , Poluentes do Solo , Animais , Oligoquetos/fisiologia , Oligoquetos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Reprodução/efeitos dos fármacos , Glutationa Transferase/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Biomarcadores/metabolismo , Plásticos Biodegradáveis , Peroxidação de Lipídeos/efeitos dos fármacos , Polietileno/toxicidade
16.
Sci Total Environ ; 948: 174807, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39019289

RESUMO

Microplastics (MPs) have been widely detected in agricultural soils, and agricultural activities have been identified as an important factor influencing the abundance of MPs in the air. However, no studies have investigated whether agricultural activities are contributors to airborne MPs in buildings near farms. We collected airborne MP samples using an active sampling method from an elementary school near corn farms during different cultivation stages to assess the impact of agricultural activities on MPs in the study school near farms. Our data showed that the predominant shapes, sizes, colors, and polymer compositions were fragments, 2-50 µm, black or grey, and polyethylene terephthalate, respectively, during all cultivation stages. The highest and lowest MP concentrations were recorded during the land preparation (56.8 ± 7.4 particles/m3, August 2022) and growth (2.5 ± 1.8 particles/m3, February 2022) stages, respectively. A multiple-path particle dosimetry model revealed that the deposition fractions of MPs in humans were highest in the head; the highest and lowest deposition rates and fluxes of MPs in the airway were found during the land preparation and growth stages, respectively. The concentration of MPs did not present a positive correlation with potassium or crustal elemental concentration; however, it did show a positive association with temperature value. Therefore, our data did not show that corn cultivation influences MP concentrations in the study school near corn farms; instead, temperature was an important influencing factor.


Assuntos
Agricultura , Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , Instituições Acadêmicas , Zea mays , Zea mays/crescimento & desenvolvimento , Poluentes Atmosféricos/análise , Agricultura/métodos , Microplásticos/análise , Humanos
17.
J Hazard Mater ; 476: 135233, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029190

RESUMO

Chlorinated pollutants may follow distinct degradation pathways in anaerobic environments compared to aerobic settings. However, the understanding of the behaviors and fate of dichlorodiphenyltrichloroethanes (DDTs) under anaerobic conditions remains limited. To address this knowledge gap, we conducted a study on flooded soil samples collected from three typical paddy fields in China using an integrated approach of enantiomer-specific analysis and compound-specific stable carbon isotope analysis. It is unexpected that the dichlorodiphenyldichloroethane /dichlorodiphenyldichloroethylene ratios (DDD/DDE=(o,p'-DDD+p,p'-DDD)/(o,p'-DDE+p,p'-DDE)) were below 1 in over 90 % of the samples. This might be attributed to the higher recalcitrance of p,p'-DDE, which concentrations were found to be 36 times higher than p,p'-DDD on average. There were 71.7 % of the samples showing enantiomeric fractions (EFs) of o,p'-DDT below 0.5, indicating a preferential accumulation of the (-)-enantiomer. The δ13C values of the anaerobic metabolite o,p'-DDD (-24.76 ± 1.35 ‰ to -34.39 ± 0.20 ‰) all deviated negatively from the initial product, while those of the aerobic metabolite o,p'-DDE (-23.61 ± 0.48 ‰ to -38.95 ± 0.81 ‰) displayed either negative or positive deviations. This demonstrates that o,p'-DDD is the primary metabolite of o,p'-DDT under anaerobic conditions. However, no clear correlations were observed between the δ13C and EF of o,p'-DDT. This study underscores the importance of such an integrated methodology in unraveling the fate and behaviors of DDTs in complex environmental systems.


Assuntos
Isótopos de Carbono , DDT , Poluentes do Solo , DDT/análise , DDT/química , China , Poluentes do Solo/análise , Poluentes do Solo/química , Isótopos de Carbono/análise , Estereoisomerismo , Solo/química , Isomerismo , Oryza/química , Monitoramento Ambiental
18.
Sci Total Environ ; 949: 175097, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39074756

RESUMO

Degradation and fragmentation of mulching films represents an increasing source of microplastics (MPs, plastic particles 1 µm to 5 mm in size) to agricultural soils. MPs have been shown to affect many soil invertebrates, including springtails. However, these studies typically use test materials representing less environmentally relevant particle types, such as pristine uniform MPs, which do not represent the large range of particle sizes and morphologies found in the field. This study aimed at providing insight into the adverse effects of MPs originating from agricultural mulching films, by using artificially aged MPs derived from both biodegradable (starch-polybutadiene adipate terephthalate (PBAT)) blend, as well as conventional (linear low-density polyethylene (LLDPE)) plastic polymers. The soil dwelling springtail Folsomia candida was exposed to these MPs for five generations in order to elucidate population effects due to possible reproduction toxicity, endocrine disruption, mutagenesis or developmental toxicity. F. candida were exposed to 0, 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) MPs in Lufa 2.2 soil, which includes concentrations within the range of environmental relevance. Juveniles produced at each concentration were transferred to the next generation, with the parental, F2 and F4 generations being exposed for four weeks and F1 and F3 generations for five weeks. No concentration-dependent effects on F. candida survival or reproduction were observed in exposures to either of the MPs, in any of the generations. These results suggest that the particular MPs used in this study, derived from mulching films used on agricultural soils, may not be potent toxicants to F. candida, even after long-term exposure and at elevated concentrations.


Assuntos
Agricultura , Artrópodes , Microplásticos , Poluentes do Solo , Microplásticos/toxicidade , Animais , Poluentes do Solo/toxicidade , Artrópodes/efeitos dos fármacos , Solo/química , Plásticos/toxicidade
19.
PeerJ ; 12: e17461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952992

RESUMO

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Assuntos
Cromo , Grão Comestível , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Cromo/toxicidade , Cromo/efeitos adversos , Cromo/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/efeitos adversos , Grão Comestível/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungos/genética , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo
20.
Microbiol Spectr ; 12(8): e0416523, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916324

RESUMO

Soil microorganisms are the most active participants in terrestrial ecosystems, and have key roles in biogeochemical cycles and ecosystem functions. Despite the extensive research on soil pH as a key predictor of microbial community and composition, a limitation of these studies lies in determining whether bacterial and/or fungal communities are directly or indirectly influenced by pH. We conducted a controlled laboratory experiment to investigate the effects of soil pH amendment (+/- 1-2 units) with six levels on soil microbial communities in two contrasting Chinese agricultural soils (pH 8.43 in Dezhou, located in the North China Plain, Shandong vs pH 6.17 in Wuxi, located in the Taihu Lake region, Jiangsu, east China). Results showed that the fungal diversity and composition were related to soil pH, but the effects were much lower than the effects of soil pH on bacterial community in two soils. The diversity and composition of bacterial communities were more closely associated with soil pH in Wuxi soils compared to Dezhou soils. The alpha diversity of bacterial communities peaked near in situ pH levels in both soils, displaying a quadratic fitting pattern. Redundancy analysis and variation partition analysis indicated that soil pH affected bacterial community and composition by directly imposing a physiological constraint on soil bacteria and indirectly altering soil characteristics (e.g., nutrient availability). The study also examined complete curves of taxa relative abundances at the phylum and family levels in response to soil pH, with most relationships conforming to a quadratic fitting pattern, indicating soil pH is a reliable predictor. Furthermore, soil pH amendment affected the transformation of nitrogen and the abundances of functional genes involved in the nitrogen cycle, and methane production and consumption. Overall, results from this study would enhance our comprehension of how soil microorganisms in contrasting farmlands will respond to soil pH changes, and would contribute to more effective soil management and conservation strategies. IMPORTANCE: This study delves into the impact of soil pH on microbial communities, investigating whether pH directly or indirectly influences bacterial and fungal communities. The research involved two contrasting soils subjected to a 1-2 pH unit amendment. Results indicate bacterial community composition was shaped by soil pH through physiological constraints and nutrient limitations. We found that most taxa relative abundances at the phylum and family levels responded to pH with a quadratic fitting pattern, indicating that soil pH is a reliable predictor. Additionally, soil pH was found to significantly influence the predicted abundance of functional genes involved in the nitrogen cycle as well as in methane production and consumption processes. These insights can contribute to develop more effective soil management and conservation strategies.


Assuntos
Agricultura , Bactérias , Fungos , Microbiota , Microbiologia do Solo , Solo , Concentração de Íons de Hidrogênio , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Fungos/isolamento & purificação , China , Microbiota/genética , Microbiota/fisiologia , Biodiversidade , Nitrogênio/metabolismo , Nitrogênio/análise , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA