RESUMO
The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.
Assuntos
Carbono , Conservação dos Recursos Naturais , Florestas , Brasil/epidemiologia , Carbono/metabolismo , Humanos , Árvores/crescimento & desenvolvimento , Ciclo do CarbonoRESUMO
In tropical rainforests, tree size and number density are influenced by disturbance history, soil, topography, climate, and biological factors that are difficult to predict without detailed and widespread forest inventory data. Here, we quantify tree size-frequency distributions over an old-growth wet tropical forest at the La Selva Biological Station in Costa Rica by using an individual tree crown (ITC) algorithm on airborne lidar measurements. The ITC provided tree height, crown area, the number of trees >10 m height and, predicted tree diameter, and aboveground biomass from field allometry. The number density showed strong agreement with field observations at the plot- (97.4%; 3% bias) and tree-height-classes level (97.4%; 3% bias). The lidar trees size spectra of tree diameter and height closely follow the distributions measured on the ground but showed less agreement with crown area observations. The model to convert lidar-derived tree height and crown area to tree diameter produced unbiased (0.8%) estimates of plot-level basal area and with low uncertainty (6%). Predictions on basal area for tree height classes were also unbiased (1.3%) but with larger uncertainties (22%). The biomass estimates had no significant bias at the plot- and tree-height-classes level (-5.2% and 2.1%). Our ITC method provides a powerful tool for tree- to landscape-level tropical forest inventory and biomass estimation by overcoming the limitations of lidar area-based approaches that require local calibration using a large number of inventory plots.
Assuntos
Florestas , Árvores , Biomassa , Costa Rica , Floresta Úmida , Clima TropicalRESUMO
Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution.(AU)
São poucos os estudos dedicados a entender a criação de modelo digital de terreno (MDT) para florestas amazônicas. O MDT tem uma importante função quando o escaneamento laser aerotransportado é usado para estimar a biomassa da vegetação. Examinamos a relação da densidade de pulsos, resolução espacial, algoritmos de filtragem, densidade da vegetação e inclinação do terreno com a qualidade do MDT. Três áreas de floresta amazônica foram sobrevoadas usando LiDAR aerotransportado. Cada nuvem de dados original teve sua densidade reduzida objetivando 20; 15; 10; 8; 6; 4; 2; 1; 0,75; 0,5 e 0,25 pulsos por metro quadrado, utilizando um processo de reamostragem aleatória. Os MDTs das nuvens reamostradas foram comparados com o MDT de referência, produzido a partir da nuvem original, calculando o desvio pixel a pixel e resumindo-o por meio do erro padrão da estimativa (RMSE). Os MDTs das nuvens reamostradas também foram avaliados quanto ao nível de correspondência com o MDT de referência. Houve uma clara compensação entre densidade de pontos e resolução horizontal. Dosséis mais densos exigem uma maior densidade de retornos, ou MDT com menor resolução.(AU)
Assuntos
Análise do Solo , Mapeamento Geográfico , Sistemas de Informação Geográfica , Ecossistema Amazônico , BrasilRESUMO
Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution.
São poucos os estudos dedicados a entender a criação de modelo digital de terreno (MDT) para florestas amazônicas. O MDT tem uma importante função quando o escaneamento laser aerotransportado é usado para estimar a biomassa da vegetação. Examinamos a relação da densidade de pulsos, resolução espacial, algoritmos de filtragem, densidade da vegetação e inclinação do terreno com a qualidade do MDT. Três áreas de floresta amazônica foram sobrevoadas usando LiDAR aerotransportado. Cada nuvem de dados original teve sua densidade reduzida objetivando 20; 15; 10; 8; 6; 4; 2; 1; 0,75; 0,5 e 0,25 pulsos por metro quadrado, utilizando um processo de reamostragem aleatória. Os MDTs das nuvens reamostradas foram comparados com o MDT de referência, produzido a partir da nuvem original, calculando o desvio pixel a pixel e resumindo-o por meio do erro padrão da estimativa (RMSE). Os MDTs das nuvens reamostradas também foram avaliados quanto ao nível de correspondência com o MDT de referência. Houve uma clara compensação entre densidade de pontos e resolução horizontal. Dosséis mais densos exigem uma maior densidade de retornos, ou MDT com menor resolução.