Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339290

RESUMO

Ketones, prevalent in many biologically significant molecules, require the development of novel methods to synthesize these structures, which is a critical endeavor in organic synthesis. Transition metal catalysis has proven to be an effective method for synthesizing ketones. However, the scope of these substrates remains relatively limited, particularly due to their incompatibility with sensitive functional groups. Herein, we report a Ni-catalyzed three-component 1,2-carboacylation of alkenes, which activates secondary/tertiary alkyl bromides. This method offers significant advantages: simplicity of operation, ready availability of substrates, and broad substrate applicability. A series of experimental studies have helped clarify the key mechanistic pathways involved in this cascade reaction.

2.
Environ Sci Ecotechnol ; 22: 100477, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39280590

RESUMO

Ozone (O3) pollution is usually linked to warm weather and strong solar radiation, making it uncommon in cold winters. However, an unusual occurrence of four high O3 episode days (with maximum hourly concentrations exceeding 100 ppbv and peaking at 121 ppbv) was recorded in January 2018 in Lanzhou city, China. During these episodes, the average daytime concentration of total non-methane volatile organic compounds (TVOCs) reached 153.4 ± 19.0 ppbv, with alkenes-largely emitted from the local petrochemical industry-comprising 82.3 ± 13.1 ppbv. Here we show a photochemical box model coupled with a Master Chemical Mechanism to elucidate the mechanisms behind this unusual wintertime O3 pollution. We find that the typically low temperatures (-1.7 ± 1.3 °C) and weak solar radiation (263.6 ± 60.7 W m- 2) of those winter episode days had a minimal effect on the reactivity of VOCs with OH radicals. Instead, the ozonolysis of alkenes generated Criegee intermediates, which rapidly decomposed into substantial RO x radicals (OH, HO2, and RO2) without sunlight. This radical production led to the oxidation of VOCs, with alkene ozonolysis ultimately contributing to 89.6 ± 8.7% of the O3 formation during these episodes. This mechanism did not activate at night due to the depletion of O3 by the NO titration effect. Furthermore, the findings indicate that a reduction of alkenes by 28.6% or NO x by 27.7% in the early afternoon could significantly mitigate wintertime O3 pollution. Overall, this study unravels the unique mechanism of alkene-induced winter O3 pollution and offers a reference for winter O3 reduction strategies in the petrochemical industrial regions.

3.
Angew Chem Int Ed Engl ; : e202413374, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248444

RESUMO

Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.

4.
Angew Chem Int Ed Engl ; : e202412828, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103315

RESUMO

A cobalt-catalyzed intramolecular Markovnikov hydroalkoxycarbonylation and hydroaminocarbonylation of unactivated alkenes has been developed, enabling highly chemo- and regioselective synthesis of α-alkylated γ-lactones and α-alkylated γ-lactams in good yields. The mild reaction conditions allow use of mono-, di- and trisubstituted alkenes bearing a variety of functional groups. Preliminary mechanistic studies suggest the reaction proceeds through a CO-mediated hydrogen atom transfer (HAT) and radical-polar crossover (RPC) process, in which a cationic acylcobalt(IV) complex is proposed as the key intermediate.

5.
Chem Biodivers ; : e202401469, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145746

RESUMO

Pancreatobililary cancers are fatal solid tumors that pose a significant threat to human life. It is imperative to investigate novel small molecule active compounds for controlling these cancers. Heterocyclic compounds (e.g. gemcitabine) and multi-substituted alkenes (e.g. resveratrol) are commonly applied in tumor treatment. Researchers have proposed that the synthesis of new trisubstituted alkenes containing heteroaromatic rings by combining these two scaffolds may be a fresh strategy to develop new active molecules. In this study, we utilized alkenyl bromide and heteroaryl boronic acid as substrates, employing Suzuki coupling to generate a series of triarylethylenes featuring nitrogen, oxygen, and sulfur atoms. Through in vitro experiments, the results indicated that some compounds exhibited remarkable anti-tumor efficacy (e.g. IC50[3be, GBC-SD] = 0.13 µM and IC50[3be, PANC-1] = 0.27 µM). The results further demonstrated that the antitumor efficacy of these compounds was dependent on the heteroatom, π-system, skeleton-bonding site, and substituent type.

6.
Synthesis (Stuttg) ; 56(11): 1775-1786, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39144683

RESUMO

Oxidative cleavage of alkenes leading to valuable carbonyl derivatives is a fundamental transformation in synthetic chemistry. In particular, ozonolysis is the mainstream method for the oxidative cleavage of alkenes that has been widely implemented in the synthesis of natural products and pharmaceutically relevant compounds. However, due to the toxicity and explosive nature of ozone, alternative approaches employing transition metals and enzymes in the presence of oxygen and/or strong oxidants have been developed. These protocols are often conducted under harsh reaction conditions that limit the substrate scope. Photochemical approaches can provide milder and more practical alternatives for this synthetically useful transformation. In this review, we outline recent visible-light-promoted oxidative cleavage reactions that involve photocatalytic activation of oxygen via electron transfer and energy transfer. Also, an emerging field featuring visible-light-promoted oxidative cleavage under anaerobic conditions is discussed. The methods highlighted in this review represent a transformative step toward more sustainable and efficient strategies for the oxidative cleavage of alkenes.

7.
Chemistry ; : e202402712, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136591

RESUMO

Difunctionalizations of alkenes represent one of the most straightforward protocols to build molecular complexity due to the simultaneous construction of two vicinal bonds cross π-bond of alkenes. It is extremely attractive yet challenging to control the stereochemistry outcome of this event. Over the past years, visible-light and Ni-catalyzed asymmetric difunctionalizations of alkenes provide an environmental benign and promising solution for the construction of saturated carbon centers with the control of regio- and enantioselectivity. In this Concept, the initiative and progress of regio- and enantioselective difunctionalizations of alkenes enabled by visible-light and nickel catalysis has been summarized. Moreover, further efforts and directions for the development of visible-light mediated Ni-catalyzed asymmetric difunctionalizations of alkenes has been discussed.

8.
Angew Chem Int Ed Engl ; : e202409836, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171407

RESUMO

Under acidic conditions (TFA) and in the presence of water, BocNHOTs promotes stereospecific 1,2-aminohydroxylations of alkenes. The processes involve intermolecular aza-Prilezhaev aziridination followed by stereospecific SN2 opening by water. This reagent combination provides regiochemical outcomes that are opposite to, or more selective than those observed using epoxidation initiated 1,2-aminohydroxylation protocols. Replacement of water by other nucleophiles allows 1,2-amino(thio)etherification, diamination, aminoazidation and aminofluorination reactions. Intramolecular processes are also feasible, including unusual variants that evoke azabicyclobutane-like reactivity.

9.
Angew Chem Int Ed Engl ; 63(38): e202405186, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953457

RESUMO

Excitation of photoactive electron donor-acceptor (EDA) complexes to generate radical is a promising approach in radical chemistry. In this study, we introduce a new model of H-bonding EDA complexes for the selective hydrothiolation and hydroxysulfenylation of carbonyl-activated alkenes with diverse thiols under visible light conditions. The reliability of this H-bonding EDA complex model has been confirmed by meticulous experimental and theoretical calculations. Mechanistic investigations have revealed the significant influence of the solvent in determining whether the excitation of photoactive H-bonding EDA complex leads to charge transfer (CT) or energy-charge transfer (En-CT), thereby controlling Markovnikov and anti-Markovnikov selectivity. Notably, the Quantum Theory of Atoms in Molecules (QTAIM) analysis clearly shows that the excited state of the C=O-H-S EDA complex involves closed-shell partially covalent interactions.

10.
Angew Chem Int Ed Engl ; 63(41): e202407928, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39022842

RESUMO

Although highly appealing for rapid access of molecular complexity, multi-functionalization of alkenes that allows incorporation of more than two functional groups remains a prominent challenge. Herein, we report a novel strategy that merges dipolar cycloaddition with photoredox promoted radical ring-opening remote C(sp3)-H functionalization, thus enabling a smooth 1,2,5-trifunctionalization of unactivated alkenes. A highly regioselective [3+2] cycloaddition anchors a reaction trigger onto alkene substrates. The subsequent halogen atom transfer (XAT) selectively initiates ring-opening process, which is followed by a series of 1,5-hydrogen atom transfer (1,5-HAT) and intermolecular fluorine atom transfer (FAT) events. With this method, site-selective introduction of three different functional groups is accomplished and a broad spectrum of valuable ß-hydroxyl-ϵ-fluoro-nitrile products are synthesized from readily available terminal alkenes.

11.
Chemistry ; 30(52): e202402051, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38978189

RESUMO

Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.

12.
Angew Chem Int Ed Engl ; 63(39): e202409429, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38972849

RESUMO

Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross-coupling reaction. The result of our exploration is a nickel-catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio- and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α-bromo esters, α-chloro phthalimides, and α-chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates.

13.
Nat Prod Res ; : 1-5, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979980

RESUMO

One new previously undescribed trihydroxy fatty ester (1) and three known aliphatic alkenes (2-4) have been isolated from the rhizomes of Trillium govanianum Wall. ex D.Don. The structures of isolated molecules were elucidated using extensive spectroscopic techniques including NMR, HR-ESI-MS, and FT-IR, respectively. This is the first report on the isolation of compounds 3 and 4 from the Trillium genus. Moreover, through a network pharmacology approach, the therapeutic potential of the isolated molecules was investigated. This analysis revealed that these fatty alkenes can be utilised for managing health conditions such as pneumonitis, inflammatory pain, and endothelial dysfunction.

14.
ChemSusChem ; : e202401244, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016039

RESUMO

A novel protocol to access vinyl sulfones and internal/terminal olefins via cobalt-catalyzed acceptorless dehydrogenation coupling (ADC) has been established. This system enables the divergent synthesis of three kinds of olefin compounds through the coupling of alcohols and sulfones under oxidant-free conditions. The broad applicability of this procedure is demonstrated by over forty olefin products, including pharmaceutical-related compounds and complex substrates, in a one-pot process. Preliminary mechanistic studies were conducted, and a proposed reaction pathway was presented.

15.
ChemMedChem ; : e202400345, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031732

RESUMO

Novel chalcogen-containing amides and esters bearing the benzenesulfonamide moiety have been synthesised upon nucleophilic conjugate addition of thiols and selenols to suitable electron-deficient alkenes. The activity of the synthesised compounds as Carbonic Anhydrases inhibitors has been investigated in vitro and the inhibition mechanism has been elucidated by X-rays studies.

16.
Front Chem ; 12: 1431382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050371

RESUMO

The Heck reaction is widely employed to build a variety of biologically relevant scaffolds and has been successfully implemented in the production of active pharmaceutical ingredients (APIs). Typically, the reaction with terminal alkenes gives high yields and stereoselectivity toward the trans-substituted alkenes product, and many green variants of the original protocol have been developed for such substrates. However, these methodologies may not be applied with the same efficiency to reactions with challenging substrates, such as internal olefins, providing trisubstituted alkenes. In the present work, we have implemented a Heck reaction protocol under green conditions to access trisubstituted alkenes as final products or key intermediates of pharmaceutical interest. A set of preliminary experiments performed on a model reaction led to selecting a simple and green setup based on a design of experiments (DoE) study. In such a way, the best experimental conditions (catalyst loading, equivalents of alkene, base and tetraalkylammonium salt, composition, and amount of solvent) have been identified. Then, a second set of experiments were performed, bringing the reaction to completion and considering additional factors. The protocol thus defined involves using EtOH as the solvent, microwave (mw) irradiation to achieve short reaction times, and the supported catalyst Pd EnCat®40, which affords an easier recovery and reuse. These conditions were tested on different aryl bromides and internal olefines to evaluate the substrate scope. Furthermore, with the aim to limit as much as possible the production of waste, a simple isomerization procedure was developed to convert the isomeric byproducts into the desired conjugated E alkene, which is also the thermodynamically favoured product. The approach herein disclosed represents a green, efficient, and easy-to-use handle towards different trisubstituted alkenes via the Heck reaction.

17.
Angew Chem Int Ed Engl ; 63(38): e202407262, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881357

RESUMO

Typically catalysed by transition metals, alkene isomerisation is a powerful methodology for preparation of internal olefins. In contrast, the use of more earth abundant main group reagents is limited to activated substrates, requiring high temperatures and excess stoichiometric amounts. Opening a new avenue for progressing this field, here we report applications of bulky sodium amide NaTMP (TMP=2,2,6,6-tetramethylpiperidide) when partnered with tridentate Lewis donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine) in catalytic alkene isomerisation of terminal olefins under mild reaction conditions. An array of distinct olefins could successfully be isomerised, including unactivated olefins, allylamines, and allylethers, showing the high activity of this partnership. In-depth mechanistic insights provided by X-ray crystallography, real-time nuclear magnetic resonance (NMR) monitoring, and density functional theory (DFT) calculations have unveiled the crucial role of in situ-generated TMP(H) in facilitating efficient isomerisation, and the choice of alkali-metal. Additionally, theoretical studies shed light on the observed E/Z selectivity, particularly accounting for the selective formation of Z-vinyl ethers. The versatility of our method is further demonstrated through the isomerisation of unactivated cycloalkenes, which undergo hydrogen isotope exchange to produce deuterated compounds.

18.
Angew Chem Int Ed Engl ; 63(36): e202403485, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38780472

RESUMO

Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.


Assuntos
Mioglobina , Oxirredução , Mioglobina/química , Mioglobina/metabolismo , Engenharia de Proteínas , Ciclopropanos/química , Metaloporfirinas/química , Metano/química , Metano/análogos & derivados
19.
Chem Asian J ; 19(14): e202400053, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38741472

RESUMO

In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.

20.
Angew Chem Int Ed Engl ; 63(30): e202404666, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38695434

RESUMO

The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA