Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356567

RESUMO

We demonstrate all-optical modulation with a near-unity contrast of nonlinear light generation in a dielectric metasurface. We study third-harmonic generation from silicon Fano-resonant metasurfaces excited by femtosecond pulses at 1480 nm wavelength. We modulate the metasurface resonance by free carrier excitation induced by absorption of an 800 nm pump pulse, leading to up to 93% suppression of third-harmonic generation. Modulation and recovery occur on (sub)picosecond time scales. According to the Drude model, the pump-induced refractive index change blue-shifts the metasurface resonance away from the generation pulse, causing a strong modulation of third-harmonic conversion efficiency. The principle holds great promise for spatiotemporal programmability of nonlinear light generation.

2.
Adv Sci (Weinh) ; 11(36): e2405160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049682

RESUMO

Binocular stereo vision relies on imaging disparity between two hemispherical retinas, which is essential to acquire image information in three dimensional environment. Therefore, retinomorphic electronics with structural and functional similarities to biological eyes are always highly desired to develop stereo vision perception system. In this work, a hemispherical optoelectronic memristor array based on Ag-TiO2 nanoclusters/sodium alginate film is developed to realize binocular stereo vision. All-optical modulation induced by plasmonic thermal effect and optical excitation in Ag-TiO2 nanoclusters is exploited to realize in-pixel image sensing and storage. Wide field of view (FOV) and spatial angle detection are experimentally demonstrated owing to the device arrangement and incident-angle-dependent characteristics in hemispherical geometry. Furthermore, depth perception and motion detection based on binocular disparity have been realized by constructing two retinomorphic memristive arrays. The results demonstrated in this work provide a promising strategy to develop all-optically controlled memristor and promote the future development of binocular vision system with in-sensor architecture.

3.
Nano Lett ; 24(12): 3744-3749, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483127

RESUMO

Ultrafast nonlinearity, which results in modulation of the linear optical response, is a basis for the development of time-varying media, in particular those operating in the epsilon-near-zero (ENZ) regime. Here, we demonstrate that the intraband excitation of hot electrons in the ENZ film results in a second-harmonic resonance shift of ∼10 THz (40 nm) and second-harmonic generation (SHG) intensity changes of >100% with only minor (<1%) changes in linear transmission. The modulation is 10-fold enhanced by a plasmonic metasurface coupled to a film, allowing for ultrafast modulation of circularly polarized SHG. The effect is described by the plasma frequency renormalization in the ENZ material and the modification of the electron damping, with a possible influence of the hot-electron dynamics on the quadratic susceptibility. The results elucidate the nature of the second-order nonlinearity in ENZ materials and pave the way to the rational engineering of active nonlinear metamaterials and metasurfaces for time-varying applications.

4.
ACS Nano ; 17(5): 4854-4861, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36857198

RESUMO

Optical computing with optical transistors has emerged as a possible solution to the exponentially growing computational workloads, yet an on-chip nano-optical modulation remains a challenge due to the intrinsically noninteracting nature of photons in addition to the diffraction limit. Here, we present an all-optical approach toward nano-excitonic transistors using an atomically thin WSe2/Mo0.5W0.5Se2 heterobilayer inside a plasmonic tip-based nanocavity. Through optical wavefront shaping, we selectively modulate tip-enhanced photoluminescence (TEPL) responses of intra- and interlayer excitons in a ∼25 nm2 area, demonstrating the enabling concept of an ultrathin 2-bit nano-excitonic transistor. We suggest a simple theoretical model describing the underlying adaptive TEPL modulation mechanism, which relies on the additional spatial degree of freedom provided by the presence of the plasmonic tip. Furthermore, we experimentally demonstrate a concept of a 2-trit nano-excitonic transistor, which can provide a technical basis for processing the massive amounts of data generated by emerging artificial intelligence technologies.

5.
Beilstein J Nanotechnol ; 13: 1011-1019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225850

RESUMO

To explain the phenomenon of all-optical modulation of quantum cascade laser (QCL), and explore the physics in QCL's gain medium which consists of multiple of dielectric nanostructures with high refractive index under light injection, we modified the 1½-period model to calculate values of electron population and lifetime in each subband which is separated by the nanostructures, optical gain, current and number of photons in the cavity of a mid-infrared QCL modulated with near-infrared optical injection. The results were consistent with an experiment, where the injected light increases the electron population and lifetime, but does not affect the optical gain obviously. Our study can be helpful for optimizing its use and dielectric nanostructure design.

6.
Nanomaterials (Basel) ; 12(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215022

RESUMO

In this study, a tin monoselenide (SnSe)-based all-optical modulator is firstly demonstrated with high tuning efficiency, broad bandwidth, and fast response time. The SnSe nanoplates are deposited in the microfiber knot resonator (MKR) on MgF2 substrate and change its transmission spectra by the external laser irradiation. The SnSe nanoplates and the microfiber are fabricated using the liquid-phase exfoliation method and the heat-flame taper-drawing method, respectively. Due to the strong absorption and enhanced light-matter interaction of the SnSe nanoplates, the largest transmitted power tunability is approximately 0.29 dB/mW with the response time of less than 2 ms. The broad tuning bandwidth is confirmed by four external pump lights ranging from ultraviolet to near-infrared. The proposed SnSe-coated microfiber resonator holds promising potential for wide application in the fields of all-optical tuning and fiber sensors.

7.
Nanomaterials (Basel) ; 12(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215029

RESUMO

Mie surface lattice resonances (SLRs) supported by periodic all-dielectric nanoparticles emerge from the radiative coupling of localized Mie resonances in individual nanoparticles through Rayleigh anomaly diffraction. To date, it remains challenging to achieve narrow bandwidth and active tuning simultaneously. In this work, we report extremely narrow and actively tunable electric dipole SLRs (ED-SLRs) in Ge2Se2Te5 (GST) metasurfaces. Simulation results show that, under oblique incidence with TE polarization, ED-SLRs with extremely narrow linewidth down to 12 nm and high quality factor up to 409 can be excited in the mid-infrared regime. By varying the incidence angle, the ED-SLR can be tuned over an extremely large spectral region covering almost the entire mid-infrared regime. We further numerically show that, by changing the GST crystalline fraction, the ED-SLR can be actively tuned, leading to nonvolatile, reconfigurable, and narrowband filtering, all-optical multilevel modulation, or all-optical switching with high performance. We expect that this work will advance the engineering of Mie SLRs and will find intriguing applications in optical telecommunication, networks, and microsystems.

8.
ACS Nano ; 15(7): 11150-11157, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34232624

RESUMO

The enhancement of nonlinear optical effects via nanoscale engineering is a hot topic of research. Optical nanoantennas increase light-matter interaction and provide, simultaneously, a high throughput of the generated harmonics in the scattered light. However, nanoscale nonlinear optics has dealt so far with static or quasi-static configurations, whereas advanced applications would strongly benefit from high-speed reconfigurable nonlinear nanophotonic devices. Here we propose and experimentally demonstrate ultrafast all-optical modulation of the second harmonic (SH) from a single nanoantenna. Our design is based on a subwavelength AlGaAs nanopillar driven by a control femtosecond light pulse in the visible range. The control pulse photoinjects free carriers in the nanostructure, which in turn induce dramatic permittivity changes at the band edge of the semiconductor. This results in an efficient modulation of the SH signal generated at 775 nm by a second femtosecond pulse at the 1.55 µm telecommunications (telecom) wavelength. Our results can lead to the development of ultrafast, all optically reconfigurable, nonlinear nanophotonic devices for a broad class of telecom and sensing applications.

9.
Nano Lett ; 21(3): 1345-1351, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497229

RESUMO

Hot-electron dynamics taking place in nanostructured materials upon irradiation with fs-laser pulses has been the subject of intensive research, leading to the emerging field of ultrafast nanophotonics. However, the most common description of nonlinear interaction with ultrashort laser pulses assumes a homogeneous spatial distribution for the photogenerated carriers. Here we theoretically show that the inhomogeneous evolution of the hot carriers at the nanoscale can disclose unprecedented opportunities for ultrafast diffraction management. In particular, we design a highly symmetric plasmonic metagrating capable of a transient symmetry breaking driven by hot electrons. The subsequent power imbalance between symmetrical diffraction orders is calculated to exceed 20% under moderate (∼2 mJ/cm2) laser fluence. Our theoretical investigation also indicates that the recovery time of the symmetric configuration can be controlled by tuning the geometry of the metaatom, and can be as fast as 2 ps for electrically connected configurations.

10.
Front Optoelectron ; 13(2): 114-128, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36641551

RESUMO

All-optical devices, which are utilized to process optical signals without electro-optical conversion, play an essential role in the next generation ultrafast, ultralow power-consumption optical information processing systems. To satisfy the performance requirement, nonlinear optical materials that are associated with fast response, high nonlinearity, broad wavelength operation, low optical loss, low fabrication cost, and integration compatibility with optical components are required. Graphene is a promising candidate, particularly considering its electrically or optically tunable optical properties, ultrafast large nonlinearity, and high integration compatibility with various nanostructures. Thus far, three all-optical modulation systems utilize graphene, namely free-space modulators, fiber-based modulators, and on-chip modulators. This paper aims to provide a broad view of state-of-the-art researches on the graphene-based all-optical modulation systems. The performances of different devices are reviewed and compared to present a comprehensive analysis and perspective of graphene-based all-optical modulation devices.

11.
Sci Bull (Beijing) ; 65(12): 1030-1038, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659018

RESUMO

Boron nanosheets possess unique photoelectric properties, including photosensitivity, photoresponse, and optical nonlinearity. In this article, we show the interaction between light and boron nanosheets in which concentric rings formed in the far field, which attributed to the strong Kerr nonlinearity of boron nanosheets. Furthermore, the distortion, regulation and relationship between the Kerr nonlinearity and effective mass or carrier mobility of the diffraction rings of boron nanosheets have been investigated. Our work shows that the spatial self-phase modulation effect of boron nanosheets is indeed caused by nonlocal electronic coherence. In addition, we have implemented all-light modulation and all-light logic gates based on the prepared boron nanosheets. We believe that our results will provide a powerful demonstration of nonlinear photonic devices based on boron nanosheets and a reference for photonic devices based on two-dimensional materials.

12.
Nanomaterials (Basel) ; 9(3)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836594

RESUMO

The microscopic and semi-macroscopic mechanisms responsible for photoinduced mass transport in functionalized azo-polymers are far from deeply understood. To get some insight into those mechanisms on "microscopic" scale, we studied the directed photoinduced motion of single functionalized polymer chains under various types of polarized light illumination using Monte Carlo bond fluctuation model and our kinetic Monte Carlo model for photoinduced mass transport. We found sub-diffusive, diffusive and super-diffusive regimes of the dynamics of single chains at constant illumination and mostly super-diffusive regime for directed motion in the presence of the gradient of light intensity. This regime is more enhanced for long than for short chains and it approaches the ballistic limit for very long chains. We propose a physical picture of light-driven inscription of Surface Relief Gratings (SRG) as corresponding to a dynamical coexistence of normal and anomalous diffusion in various parts of the system. A simple continuous time random walk model of SRG inscription based on this physical picture reproduced the light-driven mass transport found in experiments as well as the fine structure of SRG.

13.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29333735

RESUMO

The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all-optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron-phonon interactions, impedes ultrafast all-optical modulation. Here, femtosecond (≈190 fs) all-optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on-resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot-electron-induced nonlinearities for design of self-contained, ultrafast, and low-power all-optical modulators based on plasmonic platforms.

14.
Nano Lett ; 16(12): 7690-7695, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960459

RESUMO

We report the design of reconfigurable metamolecules consisting a large array of nanowire featuring U-shaped cross section. These nanoscale metamolecules support colocalized electromagnetic resonance at optical frequencies and mechanical resonance at GHz frequencies with a deep-subdiffraction-limit spatial confinement (∼λ2/100). The coherent coupling of those two distinct resonances manifests a strong optical force, which is fundamentally different from the commonly studied forms of radiation forces, gradient forces, or photothermal induced deformation. The strong optical force acting upon the built-in compliance further sets the stage for allowing the metamolecules to dynamically change their optical properties upon the incident light. The all-optical modulation at the frequency at 1.8 GHz has thus been demonstrated experimentally using a monolayer of metamolecules. The metamolecules were conveniently fabricated using complementary metal-oxide-semiconductor-compatible metal deposition and nanoimprinting processes and thus offer promising potential in developing integrated all-optical modulator.

15.
Nano Lett ; 16(12): 7655-7663, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960522

RESUMO

Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA