RESUMO
How a protein propagates the conformational changes throughout its structure remains largely unknown. In thermosensitive TRP channels, this allosteric communication is triggered by ligand interaction or in response to temperature changes. Because dynamic allostery suggests a dynamic role of disordered regions, in this work we set out to thoroughly evaluate these regions in six thermosensitive TRP channels. Thus, by contrasting the intrinsic flexibility of the transmembrane region as a function of the degree of disorder in those proteins, we discovered several residues that do not show a direct correlation in both parameters. This kind of structural discrepancy revealed residues that are either reported to be dynamic, functionally relevant or are involved in signal propagation and probably part of allosteric networks. These discrepant, potentially dynamic regions are not exclusive of TRP channels, as this same correlation was found in the Kv Shaker channel.
Assuntos
Regulação Alostérica , Domínios ProteicosRESUMO
Glucosamine-6-phosphate (GlcN6P) deaminases from Escherichia coli (EcNagBI) and Shewanella denitrificans (SdNagBII) are special examples of what constitute nonhomologous isofunctional enzymes due to their convergence, not only in catalysis, but also in cooperativity and allosteric properties. Additionally, we found that the sigmoidal kinetics of SdNagBII cannot be explained by the existing models of homotropic activation. This study describes the regulatory mechanism of SdNagBII using enzyme kinetics, isothermal titration calorimetry (ITC), and X-ray crystallography. ITC experiments revealed two different binding sites with distinctive thermodynamic signatures: a single binding site per monomer for the allosteric activator N-acetylglucosamine 6-phosphate (GlcNAc6P) and two binding sites per monomer for the transition-state analog 2-amino-2-deoxy-D-glucitol 6-phosphate (GlcNol6P). Crystallographic data demonstrated the existence of an unusual allosteric site that can bind both GlcNAc6P and GlcNol6P, implying that the homotropic activation of this enzyme arises from the occupation of the allosteric site by the substrate. In this work we describe the presence of this novel allosteric site in the SIS-fold deaminases, which is responsible for the homotropic and heterotropic activation of SdNagBII by GlcN6P and GlcNAc6P, respectively. This study unveils an original mechanism to generate a high degree of homotropic activation in SdNagBII, mimicking the allosteric and cooperative properties of hexameric EcNagBI but with a reduced number of subunits.
Assuntos
Escherichia coli , Fosfatos , Sítio Alostérico , Regulação Alostérica , Escherichia coli/metabolismo , Sítios de Ligação , Fosfatos/metabolismo , CinéticaRESUMO
Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.
Assuntos
Antimaláricos/farmacologia , Simulação por Computador , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sítio Alostérico , Antimaláricos/química , Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum/enzimologia , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind ) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids' gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.
RESUMO
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Insetos , Oxirredução , Fosforilação OxidativaRESUMO
Bacteria sense intracellular and environmental signals using an array of proteins as antennas. The information is transmitted from such sensory modules to other protein domains that act as output effectors. Sensor and effector can be part of the same polypeptide or instead be separate diffusible proteins that interact specifically. The output effector modules regulate physiologic responses, allowing the cells to adapt to the varying conditions. These biological machineries are known as signal transduction systems (STSs). Despite the captivating architectural diversity exhibited by STS proteins, a universal feature is their allosteric regulation: signal binding at one site modifies the activity at a physically distant site. Allostery requires protein plasticity, precisely encoded within their 3D structures, and implicating programmed molecular motions. This review summarizes how STS proteins connect stimuli to specific responses by exploiting allostery and protein plasticity. Illustrative examples spanning a wide variety of protein folds will focus on one- and two-component systems (TCSs). The former encompass the entire transmission route within a single polypeptide, whereas TCSs have evolved as separate diffusible proteins that interact specifically, sometimes including additional intermediary proteins in the pathway. Irrespective of their structural diversity, STS proteins are able to modulate their own molecular motions, which can be relatively slow, rigid-body movements, all the way to fast fluctuations in the form of macromolecular flexibility, thus spanning a continuous protein dynamics spectrum. In sum, STSs rely on allostery to steer information transmission, going from simple two-state switching to rich multi-state conformational order/disorder transitions.
RESUMO
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.
Assuntos
Catepsina K/química , Catepsina K/metabolismo , Domínios e Motivos de Interação entre Proteínas , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Comunicação , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação ProteicaRESUMO
Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/metabolismo , Betacoronavirus/química , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Regulação Alostérica , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/química , Domínio Catalítico , Humanos , Peptidil Dipeptidase A/química , Ligação Proteica , Domínios Proteicos , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein-protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator's allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.
Assuntos
Proteínas/metabolismo , Transdução de Sinais , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Histidina Quinase/química , Histidina Quinase/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Células Procarióticas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Relação Estrutura-AtividadeRESUMO
Protein-protein interactions often regulate the activity of protein kinases by allosterically modulating the conformation of the ATP-binding site. Bidirectional allostery implies that reverse modulation (i.e., from the ATP-binding site to the interaction and regulatory sites) must also be possible. Here, we review both the allosteric regulation of protein kinases and recent work describing how compounds binding at the ATP-binding site can promote or inhibit protein kinase interactions at regulatory sites via the reverse mechanism. Notably, the pharmaceutical industry has been developing compounds that bind to the ATP-binding site of protein kinases and potently disrupt protein-protein interactions between target protein kinases and their regulatory interacting partners. Learning to modulate allosteric processes will facilitate the development of protein-protein interaction modulators.
Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/química , Regulação Alostérica , Humanos , Ligação Proteica , Proteínas Quinases/químicaRESUMO
Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.
Assuntos
Desenvolvimento de Medicamentos , Fosfatidilinositol 3-Quinases , Proteínas Quinases , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The cardiac contraction-relaxation cycle is controlled by a sophisticated set of machinery. Of particular interest, is the revelation that allosteric networks transmit effects of binding at one site to influence troponin complex dynamics and structural-mediated signaling in often distal, functional sites in the myofilament. Our recent observations provide compelling evidence that allostery can explain the function of large-scale macromolecular events. Here we elaborate on our recent findings of interdomain communication within troponin C, using cutting-edge structural biology approaches, and highlight the importance of unveiling the unknown, distant communication networks within this system to obtain more comprehensive knowledge of how allostery impacts cardiac physiology and disease.
Assuntos
Troponina C/metabolismo , Troponina I/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Troponina C/química , Troponina I/químicaRESUMO
Human hemoglobin (Hb) Coimbra (ßAsp99Glu) is one of the seven ßAsp99 Hb variants described to date. All ßAsp99 substitutions result in increased affinity for O2 and decreased heme-heme cooperativity and their carriers are clinically characterized by erythrocytocis, caused by tissue hypoxia. Since ßAsp99 plays an important role in the allosteric α1ß2 interface and the mutation in Hb Coimbra only represents the insertion of a CH2 group in this interface, the present study of Hb Coimbra is important for a better understanding of the global impact of small modifications in this allosteric interface. We carried out functional, kinetic and dynamic characterization of this hemoglobin, focusing on the interpretation of these results in the context of a growth of the position 99 side chain length in the α1ß2 interface. Oxygen affinity was evaluated by measuring p50 values in distinct pHs (Bohr effect), and the heme-heme cooperativity was analyzed by determining the Hill coefficient (n), in addition to the effect of the allosteric effectors inositol hexaphosphate (IHP) and 2,3-bisphosphoglyceric acid (2,3-BPG). Computer simulations revealed a stabilization of the R state in the Coimbra variant with respect to the wild type, and consistently, the T-to-R quaternary transition was observed on the nanosecond time scale of classical molecular dynamics simulations.
Assuntos
Hemoglobinas Anormais/química , Hemoglobinas Anormais/metabolismo , 2,3-Difosfoglicerato/farmacologia , Regulação Alostérica , Heme/metabolismo , Hemoglobinas Anormais/genética , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Ácido Fítico/farmacologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de ProteínaRESUMO
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the ß-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the "disease of the sarcomere." The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
RESUMO
Among the biologically required first row, late d-block metals from MnII to ZnII, the catalytic and structural reach of ZnII ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this "Achilles heel" of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to "win the fight" over zinc and thrive in an otherwise hostile environment.
Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno/fisiologia , Zinco/metabolismo , Animais , HumanosRESUMO
During the erythrocytic cycle of Plasmodium falciparum malaria parasites break down host hemoglobin, resulting in the release of free heme (ferriprotoporphyrin IX). Heme is a generator of free radicals that cause oxidative stress, but it is detoxified by crystallization into hemozoin inside the food vacuole. We evaluated the interaction of heme and heme analogues with falcipain-2, a P. falciparum food vacuole cysteine protease that plays a key role in hemoglobin digestion. Heme bound to falcipain-2 with a 1:1 stoichiometry, and heme inhibited falcipain-2 activity against both human hemoglobin and chromogenic peptide substrates through a noncompetitive-like mechanism. A series of porphyrin analogues was screened for inhibition of falcipain-2, demonstrating a minor contribution of iron to heme-falcipain-2 interaction, and revealing dependence on both propionic and vinyl groups for inhibition of falcipain-2 by heme. Docking and molecular dynamics simulation unveiled a novel, inducible heme-binding moiety in falcipain-2 adjacent to the catalytic site. Kinetic data suggested that the noncompetitive-like inhibition was substrate inhibition induced by heme. Collectively these data suggest that binding of heme to falcipain-2 may limit the accumulation of free heme in the parasite food vacuole, providing a means of heme detoxification in addition to crystallization into hemozoin.
Assuntos
Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Heme/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Regulação Alostérica , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Porfirinas/química , Ligação Proteica , Proteínas Recombinantes/químicaRESUMO
Allosteric modulators of kinase function are of considerable pharmacological interest as blockers or agonists of key cell-signaling pathways. They are gaining attention due to their purported higher selectivity and efficacy relative to ATP-competitive ligands. Upon binding to the target protein, allosteric inhibitors promote a conformational change that purposely facilitates or hampers ATP binding. However, allosteric binding remains a matter of contention because the binding site does not fit with a natural ligand (i.e. ATP or phosphorylation substrate) of the protein. In this study, we show that allosteric binding occurs by means of a local structural motif that promotes association with the ligand. We specifically show that allosteric modulators promote a local metastable state that is stabilized upon association. The induced conformational change generates a local enrichment of the protein in the so-called dehydrons, which are solvent-exposed backbone hydrogen bonds. These structural deficiencies that are inherently sticky are not present in the apo form and constitute a local metastable state that promotes association with the ligand. This productive induced metastability (PIM) is likely to translate into a general molecular design concept.