RESUMO
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research.
Assuntos
Antineoplásicos , Mucosite , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Roedores , Qualidade de Vida , Antineoplásicos/toxicidade , Desenvolvimento de Medicamentos , Mucosa IntestinalRESUMO
In view of the recurrent applications of pesticides in agricultural producing countries, the increased presence of these substances in the environment raise a demand for the evaluation of adverse effects on non-target organisms. This study assesses the impact of exposure to five pesticides suspected of being endocrine disruptors (atrazine, 2,4-dichlorophenoxyacetic acid, mancozeb, chlorpyrifos and cypermethrin) on the reproductive development of the nematode Caenorhabditis elegans. To this end, nematodes in the L4 larval stage were exposed to different concentrations of pesticides for 24 h and the consequences on brood size, percentage of gravid nematodes, expression of reproductive-related genes and vitellogenin trafficking and endocytosis were measured. Moreover, 17ß-estradiol was used as an estrogenic control for endocrine disrupting compounds throughout the work. The results showed that all the pesticides disturbed to some extent one or more of the evaluated endpoints. Remarkably, we found that atrazine, 2,4-dichlorophenoxyacetic acid and chlorpyrifos produced comparable responses to 17ß-estradiol suggesting that these pesticides may have estrogen-like endocrine disrupting activity. Atrazine and 17ß-estradiol, as well as 2,4-dichlorophenoxyacetic acid and chlorpyrifos to a lesser extent, decreased the brood size, affected vitellogenin trafficking and endocytosis, and changed the expression of several reproductive-related genes. Conversely, mancozeb and cypermethrin had the least impact on the evaluated endpoint. Cypermethrin affected the brood size at the highest concentration tested and mancozeb altered the distribution of vitellogenin only in approximately 10% of the population. However, both products overexpressed hus-1 and vit-2 genes, indicating that an induction of stress could interfere with the normal development of the nematode. In conclusion, our work proved that C. elegans is a useful biological model to identify the effects of estrogen-like endocrine disruptor compounds, and the sublethal endpoints proposed may serve as an important contribution on evaluating environmental pollutants.
Assuntos
Atrazina , Clorpirifos , Disruptores Endócrinos , Herbicidas , Praguicidas , Ácido 2,4-Diclorofenoxiacético , Animais , Atrazina/toxicidade , Caenorhabditis elegans/metabolismo , Clorpirifos/toxicidade , Disruptores Endócrinos/toxicidade , Estradiol/farmacologia , Estrogênios/farmacologia , Herbicidas/toxicidade , Praguicidas/toxicidade , Vitelogeninas/genética , Vitelogeninas/metabolismo , Vitelogeninas/farmacologiaRESUMO
The discovery of a new drug requires over a billion dollars and around 12 years of research efforts, and toxicity is the leading reason for the failure to approve candidate drugs. Many alternative methods have been validated to detect toxicity as early as possible to diminish the waste of resources and efforts in medicinal chemistry research, and in vivo alternative methods are especially valuable for the amount of information they can provide at little cost and in a short time. In this work, we present a review of the literature published between the years 2000 and 2021 on in vivo alternative methods of toxicity screening employed in medicinal chemistry, which we believe will be useful because, in addition to shortening the research time, these studies provide much additional information aside from the toxicity of drug candidate compounds. These in vivo models include zebrafish, Artemia salina, Galleria mellonella, Drosophila melanogaster, planarians, and Caenorhabditis elegans. The most published ones in the last decade were zebrafish, D. melanogaster, and C. elegans due to their reliability, ease, and cost-effectiveness in implementation and flexibility. Special attention is given to C. elegans because of its rising popularity, a wide range of uses, including toxicity screening, and active effects measurement, from antioxidant effects to anthelmintic and antimicrobial activities, and its fast and reliable results. Over time, C. elegans also became a viable high-throughput (HTS) automated drug screening option. Additionally, this manuscript lists briefly the other screening methods used for the initial toxicological analyses and the role of alternative in vivo methods in these scenarios, classifying them as in silico, in vitro and alternative in vivo models that have been receiving a growing increase in interest in recent years.
Assuntos
Caenorhabditis elegans , Drosophila melanogaster , Animais , Antioxidantes/farmacologia , Descoberta de Drogas/métodos , Reprodutibilidade dos Testes , Peixe-ZebraRESUMO
Dermatophytosis is the most common mycosis worldwide, affecting approximately 20 to 25% of the population, regardless of gender, race, color, and age. Most antifungal agents used for the treatment of dermatophytosis belong to the azole and allylamine classes. Dermatophytes are reported to be resistant to most commercial drugs, especially microbial biofilms, in addition to their considerable toxicity. It should be emphasized the importance of looking for new molecules with reduced toxicity, as well as new targets and mechanisms of action. This work aims to incorporate nonyl 3,4-dihydroxybenzoate, a potent fungicide compound against planktonic cells and dermatophyte biofilms in nanostructured lipid systems (NLS), in order to reduce toxicity in high concentrations, improve its solubility and maintain its effectiveness. The compound was incorporated into NLS constituted by cholesterol, mixture of polyoxyethylene (23) lauryl ether (Brij®98) and soybean phosphatidylcholine (Epikuron® 200)], 2: 1 ratio and PBS (phosphate-buffered saline). The characterization of the incorporation was performed. Susceptibility tests were conducted according to document M38-A2 by CLSI (2008). The toxicity of the NLS compound was evaluated in HaCaT cell lines by the sulforhodamine B method and in alternative models Caenorhabditis elegans and zebrafish. Finally, its efficacy was evaluated against the mature Trichophyton rubrum and Trichophyton mentagrophytes biofilms. NLS and nonyl 3,4-dihydroxybenzoate loaded into NLS displayed sizes ranging from 137.8 ± 1.815 to 167.9 ± 4.070 nm; the polydispersity index (PDI) varying from 0.331 ± 0.020 to 0.377 ± 0.004 and zeta potential ranging from -1.46 ± 0.157 to -4.63 ± 0.398 mV, respectively. Polarized light microscopy results confirmed the formation of NLS of the microemulsion type. Nonyl incorporated into NLS showed minimum inhibitory concentration (MIC) values, ranging from 2 to 15.6 mg/L. The toxicity tests presented cell viability higher than 80% in all tested concentrations, as well as, a significantly increased of the survival of Caenorhabditis elegans and zebrafish models. Anti-biofilm tests proved the efficacy of the incorporation. These findings contribute significantly to the search for new antifungals and allow the systemic administration of the compound, since the incorporation can increase the solubility of non-polar compounds, improve bioavailability, effectiveness and reduce toxicity.
RESUMO
Mammalian models have served as a basis for R&D over the past decades. Nevertheless, these models are expensive, laborious, may yield results that cannot always be translated into the human in vivo situation and, more recently, have reverberated great social and ethical dilemmas. Hence, the prospect of changes in the global scientific scenario and the Three Rs principle (Reduction, Replacement and Refinement) have encouraged the development of alternative methods to the use of mammals. Despite the efforts, suitable alternative tests are not available in all areas of biomedical research, as regulatory acceptance requires time, prior validation and robust financial and scientific investment. In this perspective, we aim to shed light on the concepts, challenges and perspectives for implementation of innovative alternative animal and non-animal methods in scientific research. The applicability and meaningfulness of invertebrate animal models, in silico analysis and reverse pharmacology are discussed, among other aspects of relevance in today's scenario. Overall, the use of alternative models, including Artemia salina (brine shrimp), Caenorhabditis elegans (roundworm), Danio rerio (zebra fish), Drosophila melanogaster (fruit fly), Galleria mellonella (greater waxmoth) and in silico modelling, increased 909% from 1990 to 2015, as compared to 154% of conventional mammals in the same period. Thus, technological and scientific advancements in the fields of toxicology and drug development seem to have diminished the need for mammalian models. Today, however, mammals still remain critically indispensable to provide - in most cases -reliable data subsidizing and validating translation into the clinical setting.